Cargando…
The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes
The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a n...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178530/ https://www.ncbi.nlm.nih.gov/pubmed/37175771 http://dx.doi.org/10.3390/ijms24098057 |
_version_ | 1785040886959177728 |
---|---|
author | Ilyin, Sergey O. Kostyuk, Anna V. Anokhina, Tatyana S. Melekhina, Viktoria Y. Bakhtin, Danila S. Antonov, Sergey V. Volkov, Alexey V. |
author_facet | Ilyin, Sergey O. Kostyuk, Anna V. Anokhina, Tatyana S. Melekhina, Viktoria Y. Bakhtin, Danila S. Antonov, Sergey V. Volkov, Alexey V. |
author_sort | Ilyin, Sergey O. |
collection | PubMed |
description | The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a nominal co-solvent to improve its processing into a nanofiltration membrane by phase inversion. A study of the rheology of cellulose solutions in diluted ionic liquids ([EMIM]Ac, [EMIM]Cl, and [BMIM]Ac) containing up to 75% DMSO showed the possibility of decreasing the viscosity by up to 50 times while keeping the same cellulose concentration. Surprisingly, typical cellulose non-solvents (water, methanol, ethanol, and isopropanol) behave similarly, reducing the viscosity at low doses but causing structuring of the cellulose solution and its phase separation at high concentrations. According to laser interferometry, the nature of these non-solvents affects the mass transfer direction relative to the forming membrane and the substance interdiffusion rate, which increases by four-fold when passing from isopropanol to methanol or water. Examination of the nanofiltration characteristics of the obtained membranes showed that the dilution of ionic liquid enhances the rejection without changing the permeability, while the transition to alcohols increases the permeability while maintaining the rejection. |
format | Online Article Text |
id | pubmed-10178530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101785302023-05-13 The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes Ilyin, Sergey O. Kostyuk, Anna V. Anokhina, Tatyana S. Melekhina, Viktoria Y. Bakhtin, Danila S. Antonov, Sergey V. Volkov, Alexey V. Int J Mol Sci Article The weak point of ionic liquids is their high viscosity, limiting the maximum polymer concentration in the forming solutions. A low-viscous co-solvent can reduce viscosity, but cellulose has none. This study demonstrates that dimethyl sulfoxide (DMSO), being non-solvent for cellulose, can act as a nominal co-solvent to improve its processing into a nanofiltration membrane by phase inversion. A study of the rheology of cellulose solutions in diluted ionic liquids ([EMIM]Ac, [EMIM]Cl, and [BMIM]Ac) containing up to 75% DMSO showed the possibility of decreasing the viscosity by up to 50 times while keeping the same cellulose concentration. Surprisingly, typical cellulose non-solvents (water, methanol, ethanol, and isopropanol) behave similarly, reducing the viscosity at low doses but causing structuring of the cellulose solution and its phase separation at high concentrations. According to laser interferometry, the nature of these non-solvents affects the mass transfer direction relative to the forming membrane and the substance interdiffusion rate, which increases by four-fold when passing from isopropanol to methanol or water. Examination of the nanofiltration characteristics of the obtained membranes showed that the dilution of ionic liquid enhances the rejection without changing the permeability, while the transition to alcohols increases the permeability while maintaining the rejection. MDPI 2023-04-29 /pmc/articles/PMC10178530/ /pubmed/37175771 http://dx.doi.org/10.3390/ijms24098057 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ilyin, Sergey O. Kostyuk, Anna V. Anokhina, Tatyana S. Melekhina, Viktoria Y. Bakhtin, Danila S. Antonov, Sergey V. Volkov, Alexey V. The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title | The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title_full | The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title_fullStr | The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title_full_unstemmed | The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title_short | The Effect of Non-Solvent Nature on the Rheological Properties of Cellulose Solution in Diluted Ionic Liquid and Performance of Nanofiltration Membranes |
title_sort | effect of non-solvent nature on the rheological properties of cellulose solution in diluted ionic liquid and performance of nanofiltration membranes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178530/ https://www.ncbi.nlm.nih.gov/pubmed/37175771 http://dx.doi.org/10.3390/ijms24098057 |
work_keys_str_mv | AT ilyinsergeyo theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT kostyukannav theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT anokhinatatyanas theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT melekhinaviktoriay theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT bakhtindanilas theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT antonovsergeyv theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT volkovalexeyv theeffectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT ilyinsergeyo effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT kostyukannav effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT anokhinatatyanas effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT melekhinaviktoriay effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT bakhtindanilas effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT antonovsergeyv effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes AT volkovalexeyv effectofnonsolventnatureontherheologicalpropertiesofcellulosesolutionindilutedionicliquidandperformanceofnanofiltrationmembranes |