Cargando…
A Novel Hybrid Runge Kutta Optimizer with Support Vector Machine on Gene Expression Data for Cancer Classification
It is crucial to accurately categorize cancers using microarray data. Researchers have employed a variety of computational intelligence approaches to analyze gene expression data. It is believed that the most difficult part of the problem of cancer diagnosis is determining which genes are informativ...
Autores principales: | Houssein, Essam H., Hassan, Hager N., Samee, Nagwan Abdel, Jamjoom, Mona M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178557/ https://www.ncbi.nlm.nih.gov/pubmed/37175012 http://dx.doi.org/10.3390/diagnostics13091621 |
Ejemplares similares
-
Error behaviour of exponential Runge-Kutta methods
por: Kværnø, Anne
Publicado: (2005) -
Stable local-global stepsize control for Runge-Kutta methods
por: Kulikov, G Yu
Publicado: (1997) -
Generalized disks of contractivity for explicit and implicit runge-kutta methods
por: Dahlquist, Germund
Publicado: (1979) -
The numerical solution of differential-algebraic systems by Runge-Kutta methods
por: Hairer, Ernst, et al.
Publicado: (1989) -
Structure aware Runge–Kutta time stepping for spacetime tents
por: Gopalakrishnan, Jay, et al.
Publicado: (2020)