Cargando…
BRMI-Net: Deep Learning Features and Flower Pollination-Controlled Regula Falsi-Based Feature Selection Framework for Breast Cancer Recognition in Mammography Images
The early detection of breast cancer using mammogram images is critical for lowering women’s mortality rates and allowing for proper treatment. Deep learning techniques are commonly used for feature extraction and have demonstrated significant performance in the literature. However, these features d...
Autores principales: | Rehman, Shams ur, Khan, Muhamamd Attique, Masood, Anum, Almujally, Nouf Abdullah, Baili, Jamel, Alhaisoni, Majed, Tariq, Usman, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178634/ https://www.ncbi.nlm.nih.gov/pubmed/37175009 http://dx.doi.org/10.3390/diagnostics13091618 |
Ejemplares similares
-
BC(2)NetRF: Breast Cancer Classification from Mammogram Images Using Enhanced Deep Learning Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection
por: Jabeen, Kiran, et al.
Publicado: (2023) -
MSRNet: Multiclass Skin Lesion Recognition Using Additional Residual Block Based Fine-Tuned Deep Models Information Fusion and Best Feature Selection
por: Bibi, Sobia, et al.
Publicado: (2023) -
BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification
por: Zahid, Usman, et al.
Publicado: (2022) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Saleem, Faizan, et al.
Publicado: (2021) -
Human Action Recognition: A Paradigm of Best Deep Learning Features Selection and Serial Based Extended Fusion
por: Khan, Seemab, et al.
Publicado: (2021)