Cargando…
The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a nov...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178944/ https://www.ncbi.nlm.nih.gov/pubmed/37176133 http://dx.doi.org/10.3390/ijms24098424 |
Sumario: | Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis. |
---|