Cargando…
MSC−sEV Treatment Polarizes Pro−Fibrotic M2 Macrophages without Exacerbating Liver Fibrosis in NASH
Mesenchymal stem/stromal cell small extracellular vesicles (MSC−sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC−sEV use is an important co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179074/ https://www.ncbi.nlm.nih.gov/pubmed/37175803 http://dx.doi.org/10.3390/ijms24098092 |
Sumario: | Mesenchymal stem/stromal cell small extracellular vesicles (MSC−sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC−sEV use is an important consideration. One concern is that MSC−sEVs have been shown to induce M2 macrophage polarization, which is known to be pro−fibrotic, potentially indicating contraindication in fibrotic diseases such as liver fibrosis. Despite this concern, previous studies have shown that MSC−sEVs alleviate high−fat diet (HFD)−induced non−alcoholic steatohepatitis (NASH). To assess whether the pro−fibrotic M2 macrophage polarization induced by MSC−sEVs could worsen liver fibrosis, we first verified that our MSC−sEV preparations could promote M2 polarization in vitro prior to their administration in a mouse model of NASH. Our results showed that treatment with MSC−sEVs reduced or had comparable NAFLD Activity Scores and liver fibrosis compared to vehicle− and Telmisartan−treated animals, respectively. Although CD163(+) M2 macrophages were increased in the liver, and serum IL−6 levels were reduced in MSC−sEV treated animals, our data suggests that MSC−sEV treatment was efficacious in reducing liver fibrosis in a mouse model of NASH despite an increase in pro−fibrotic M2 macrophage polarization. |
---|