Cargando…

Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect

Many intervention studies assume the stability of heart rate variability (HRV) parameters, and their sample sizes are often small, which can significantly affect their conclusions. The aim of this study is to assess the stability and reliability of standard HRV parameters within a single resting ses...

Descripción completa

Detalles Bibliográficos
Autores principales: Žunkovič, Breda, Kejžar, Nataša, Bajrović, Fajko F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179119/
https://www.ncbi.nlm.nih.gov/pubmed/37176559
http://dx.doi.org/10.3390/jcm12093118
_version_ 1785041022955290624
author Žunkovič, Breda
Kejžar, Nataša
Bajrović, Fajko F.
author_facet Žunkovič, Breda
Kejžar, Nataša
Bajrović, Fajko F.
author_sort Žunkovič, Breda
collection PubMed
description Many intervention studies assume the stability of heart rate variability (HRV) parameters, and their sample sizes are often small, which can significantly affect their conclusions. The aim of this study is to assess the stability and reliability of standard HRV parameters within a single resting session, and to estimate the sample size required to detect the minimal clinically important effect of an intervention. Heart rate was recorded in 50 adult healthy subjects for 50 min in a seated position. Eight standard HRV parameters were calculated from five evenly spaced 5 min intervals. Stability was assessed by comparing the mean values of HRV parameters between the consecutive five test–retest measurements. Absolute reliability was determined by standard error of measurement, and relative reliability by intraclass correlation coefficient. The sample size required to detect a mean difference of ≥30% of between-subject standard deviation was estimated. As expected, almost all HRV parameters had poor absolute reliability but most HRV parameters had substantial to excellent relative reliability. We found statistically significant differences in almost all HRV parameters between the first 20 min and the last 30 min of the session. The estimated sample size ranged from 19 to 300 subjects for the first 20 min and from 36 to 194 subjects for the last 30 min of the session, depending on the selected HRV parameter. We concluded that optimal HRV measurement protocols in a resting seated position should be performed within the first 20 min or between 20 and 50 min after assuming a resting seated position. Future interventional HRV studies should include a sufficient number of subjects and consider the Bonferroni correction according to the number of selected HRV parameters to achieve an appropriate level of study power and precision.
format Online
Article
Text
id pubmed-10179119
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101791192023-05-13 Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect Žunkovič, Breda Kejžar, Nataša Bajrović, Fajko F. J Clin Med Article Many intervention studies assume the stability of heart rate variability (HRV) parameters, and their sample sizes are often small, which can significantly affect their conclusions. The aim of this study is to assess the stability and reliability of standard HRV parameters within a single resting session, and to estimate the sample size required to detect the minimal clinically important effect of an intervention. Heart rate was recorded in 50 adult healthy subjects for 50 min in a seated position. Eight standard HRV parameters were calculated from five evenly spaced 5 min intervals. Stability was assessed by comparing the mean values of HRV parameters between the consecutive five test–retest measurements. Absolute reliability was determined by standard error of measurement, and relative reliability by intraclass correlation coefficient. The sample size required to detect a mean difference of ≥30% of between-subject standard deviation was estimated. As expected, almost all HRV parameters had poor absolute reliability but most HRV parameters had substantial to excellent relative reliability. We found statistically significant differences in almost all HRV parameters between the first 20 min and the last 30 min of the session. The estimated sample size ranged from 19 to 300 subjects for the first 20 min and from 36 to 194 subjects for the last 30 min of the session, depending on the selected HRV parameter. We concluded that optimal HRV measurement protocols in a resting seated position should be performed within the first 20 min or between 20 and 50 min after assuming a resting seated position. Future interventional HRV studies should include a sufficient number of subjects and consider the Bonferroni correction according to the number of selected HRV parameters to achieve an appropriate level of study power and precision. MDPI 2023-04-25 /pmc/articles/PMC10179119/ /pubmed/37176559 http://dx.doi.org/10.3390/jcm12093118 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Žunkovič, Breda
Kejžar, Nataša
Bajrović, Fajko F.
Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title_full Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title_fullStr Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title_full_unstemmed Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title_short Standard Heart Rate Variability Parameters—Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect
title_sort standard heart rate variability parameters—their within-session stability, reliability, and sample size required to detect the minimal clinically important effect
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179119/
https://www.ncbi.nlm.nih.gov/pubmed/37176559
http://dx.doi.org/10.3390/jcm12093118
work_keys_str_mv AT zunkovicbreda standardheartratevariabilityparameterstheirwithinsessionstabilityreliabilityandsamplesizerequiredtodetecttheminimalclinicallyimportanteffect
AT kejzarnatasa standardheartratevariabilityparameterstheirwithinsessionstabilityreliabilityandsamplesizerequiredtodetecttheminimalclinicallyimportanteffect
AT bajrovicfajkof standardheartratevariabilityparameterstheirwithinsessionstabilityreliabilityandsamplesizerequiredtodetecttheminimalclinicallyimportanteffect