Cargando…
An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders
Heterogeneous three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is an important but very challenging technique for recovering the conformational heterogeneity of flexible biological macromolecules such as proteins in different functional states. Heterogeneou...
Autores principales: | Wang, Xiangwen, Lu, Yonggang, Lin, Xianghong, Li, Jianwei, Zhang, Zequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179202/ https://www.ncbi.nlm.nih.gov/pubmed/37176089 http://dx.doi.org/10.3390/ijms24098380 |
Ejemplares similares
-
A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering
por: Wang, Xiangwen, et al.
Publicado: (2021) -
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
por: Xu, Yaofang, et al.
Publicado: (2016) -
3D reconstruction from cryo-EM projection images using two spherical embeddings
por: Lu, Yonggang, et al.
Publicado: (2022) -
AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images
por: Al-Azzawi, Adil, et al.
Publicado: (2019) -
CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images
por: Lei, Houchao, et al.
Publicado: (2021)