Cargando…
A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins
This paper presents a finite element model for predicting the performance and failure behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive elements at the bond int...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179210/ https://www.ncbi.nlm.nih.gov/pubmed/37176179 http://dx.doi.org/10.3390/ma16093297 |
_version_ | 1785041043934150656 |
---|---|
author | Bianchi, Francesco Liu, Yiding Joesbury, Adam M. Ayre, David Zhang, Xiang |
author_facet | Bianchi, Francesco Liu, Yiding Joesbury, Adam M. Ayre, David Zhang, Xiang |
author_sort | Bianchi, Francesco |
collection | PubMed |
description | This paper presents a finite element model for predicting the performance and failure behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive elements at the bond interface is employed to simulate the onset and propagation of debonding cracks. Two different traction–separation laws for the interface cohesive elements are employed, representing the fracture toughness properties of the plain adhesive bond and a pin-reinforced interface, respectively. This approach can account for the large-scale crack-bridging effect of the pins. It avoids using concentrated pin forces in the numerical model, thus removing mesh-size dependency, and permitting more accurate and robust computational analysis. Lap joints reinforced with various pin arrays were tested under quasi-static load. Predicted load versus applied displacement relations are in good agreement with the test results, especially for the debonding onset and early stage of crack propagation. |
format | Online Article Text |
id | pubmed-10179210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101792102023-05-13 A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins Bianchi, Francesco Liu, Yiding Joesbury, Adam M. Ayre, David Zhang, Xiang Materials (Basel) Article This paper presents a finite element model for predicting the performance and failure behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive elements at the bond interface is employed to simulate the onset and propagation of debonding cracks. Two different traction–separation laws for the interface cohesive elements are employed, representing the fracture toughness properties of the plain adhesive bond and a pin-reinforced interface, respectively. This approach can account for the large-scale crack-bridging effect of the pins. It avoids using concentrated pin forces in the numerical model, thus removing mesh-size dependency, and permitting more accurate and robust computational analysis. Lap joints reinforced with various pin arrays were tested under quasi-static load. Predicted load versus applied displacement relations are in good agreement with the test results, especially for the debonding onset and early stage of crack propagation. MDPI 2023-04-22 /pmc/articles/PMC10179210/ /pubmed/37176179 http://dx.doi.org/10.3390/ma16093297 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bianchi, Francesco Liu, Yiding Joesbury, Adam M. Ayre, David Zhang, Xiang A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title | A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title_full | A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title_fullStr | A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title_full_unstemmed | A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title_short | A Finite Element Model for Predicting the Static Strength of a Composite Hybrid Joint with Reinforcement Pins |
title_sort | finite element model for predicting the static strength of a composite hybrid joint with reinforcement pins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179210/ https://www.ncbi.nlm.nih.gov/pubmed/37176179 http://dx.doi.org/10.3390/ma16093297 |
work_keys_str_mv | AT bianchifrancesco afiniteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT liuyiding afiniteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT joesburyadamm afiniteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT ayredavid afiniteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT zhangxiang afiniteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT bianchifrancesco finiteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT liuyiding finiteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT joesburyadamm finiteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT ayredavid finiteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins AT zhangxiang finiteelementmodelforpredictingthestaticstrengthofacompositehybridjointwithreinforcementpins |