Cargando…
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
Supervised deep learning requires labelled data. On medical images, data is often labelled inconsistently (e.g., too large) with varying accuracies. We aimed to assess the impact of such label noise on dental calculus detection on bitewing radiographs. On 2584 bitewings calculus was accurately label...
Autores principales: | Büttner, Martha, Schneider, Lisa, Krasowski, Aleksander, Krois, Joachim, Feldberg, Ben, Schwendicke, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179289/ https://www.ncbi.nlm.nih.gov/pubmed/37176499 http://dx.doi.org/10.3390/jcm12093058 |
Ejemplares similares
-
Classification of Dental Radiographs Using Deep Learning
por: Cejudo, Jose E., et al.
Publicado: (2021) -
Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs
por: Krois, Joachim, et al.
Publicado: (2021) -
Deep learning for early dental caries detection in bitewing radiographs
por: Lee, Shinae, et al.
Publicado: (2021) -
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
por: Rohrer, Csaba, et al.
Publicado: (2022) -
Costs for Statutorily Insured Dental Services in Older Germans 2012–2017
por: Krasowski, Aleksander, et al.
Publicado: (2021)