Cargando…
Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials
Thermal conductivity is a fundamental material parameter involved in various infrastructure design guides around the world. This paper developed an innovative neural network (NN) aided homogenization approach for predicting the effective thermal conductivity of various composite construction materia...
Autores principales: | Shi, Zhu, Peng, Wenyao, Xiang, Chaoqun, Li, Liang, Xie, Qibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179405/ https://www.ncbi.nlm.nih.gov/pubmed/37176204 http://dx.doi.org/10.3390/ma16093322 |
Ejemplares similares
-
Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites
por: Ejaz, Faizan, et al.
Publicado: (2022) -
Thermal Conductivity of Composite Materials Copper-Fullerene Soot
por: Koltsova, Tatiana, et al.
Publicado: (2022) -
Constructing Porous
Alumina Frameworks by Sintering
for Enhanced Thermal Conductivity of Polymer Composites
por: Wu, Xian, et al.
Publicado: (2022) -
Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization
por: Han, Tiancheng, et al.
Publicado: (2013) -
Homogenization and Localization of Ratcheting Behavior of Composite Materials and Structures with the Thermal Residual Stress Effect
por: Yang, Danhui, et al.
Publicado: (2019)