Cargando…
Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases
With the goal of combating the multi-faceted Alzheimer’s disease (AD), a series of Rivastigmine-Benzimidazole (RIV–BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activit...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179505/ https://www.ncbi.nlm.nih.gov/pubmed/37176018 http://dx.doi.org/10.3390/ijms24098312 |
_version_ | 1785041113938132992 |
---|---|
author | Vicente-Zurdo, David Brunetti, Leonardo Piemontese, Luca Guedes, Beatriz Cardoso, Sandra M. Chavarria, Daniel Borges, Fernanda Madrid, Yolanda Chaves, Sílvia Santos, M. Amélia |
author_facet | Vicente-Zurdo, David Brunetti, Leonardo Piemontese, Luca Guedes, Beatriz Cardoso, Sandra M. Chavarria, Daniel Borges, Fernanda Madrid, Yolanda Chaves, Sílvia Santos, M. Amélia |
author_sort | Vicente-Zurdo, David |
collection | PubMed |
description | With the goal of combating the multi-faceted Alzheimer’s disease (AD), a series of Rivastigmine-Benzimidazole (RIV–BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-β (Aβ) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson’s disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aβ-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxic metabolite of a Parkinsonian-inducing agent. |
format | Online Article Text |
id | pubmed-10179505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101795052023-05-13 Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases Vicente-Zurdo, David Brunetti, Leonardo Piemontese, Luca Guedes, Beatriz Cardoso, Sandra M. Chavarria, Daniel Borges, Fernanda Madrid, Yolanda Chaves, Sílvia Santos, M. Amélia Int J Mol Sci Article With the goal of combating the multi-faceted Alzheimer’s disease (AD), a series of Rivastigmine-Benzimidazole (RIV–BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-β (Aβ) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson’s disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aβ-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxic metabolite of a Parkinsonian-inducing agent. MDPI 2023-05-05 /pmc/articles/PMC10179505/ /pubmed/37176018 http://dx.doi.org/10.3390/ijms24098312 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vicente-Zurdo, David Brunetti, Leonardo Piemontese, Luca Guedes, Beatriz Cardoso, Sandra M. Chavarria, Daniel Borges, Fernanda Madrid, Yolanda Chaves, Sílvia Santos, M. Amélia Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title | Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title_full | Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title_fullStr | Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title_full_unstemmed | Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title_short | Rivastigmine–Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases |
title_sort | rivastigmine–benzimidazole hybrids as promising multitarget metal-modulating compounds for potential treatment of neurodegenerative diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179505/ https://www.ncbi.nlm.nih.gov/pubmed/37176018 http://dx.doi.org/10.3390/ijms24098312 |
work_keys_str_mv | AT vicentezurdodavid rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT brunettileonardo rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT piemonteseluca rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT guedesbeatriz rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT cardososandram rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT chavarriadaniel rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT borgesfernanda rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT madridyolanda rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT chavessilvia rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases AT santosmamelia rivastigminebenzimidazolehybridsaspromisingmultitargetmetalmodulatingcompoundsforpotentialtreatmentofneurodegenerativediseases |