Cargando…

A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts

Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Zhuang, Rouquier, Léa, Chappard, Christine, Bachy, Manon, Huang, Xingrong, Potier, Esther, Bensidhoum, Morad, Hoc, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179528/
https://www.ncbi.nlm.nih.gov/pubmed/37176232
http://dx.doi.org/10.3390/ma16093349
_version_ 1785041119253364736
author Xiong, Zhuang
Rouquier, Léa
Chappard, Christine
Bachy, Manon
Huang, Xingrong
Potier, Esther
Bensidhoum, Morad
Hoc, Thierry
author_facet Xiong, Zhuang
Rouquier, Léa
Chappard, Christine
Bachy, Manon
Huang, Xingrong
Potier, Esther
Bensidhoum, Morad
Hoc, Thierry
author_sort Xiong, Zhuang
collection PubMed
description Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (ε(z)) and strain energy density (W(e)). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.
format Online
Article
Text
id pubmed-10179528
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101795282023-05-13 A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts Xiong, Zhuang Rouquier, Léa Chappard, Christine Bachy, Manon Huang, Xingrong Potier, Esther Bensidhoum, Morad Hoc, Thierry Materials (Basel) Article Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (ε(z)) and strain energy density (W(e)). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering. MDPI 2023-04-25 /pmc/articles/PMC10179528/ /pubmed/37176232 http://dx.doi.org/10.3390/ma16093349 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xiong, Zhuang
Rouquier, Léa
Chappard, Christine
Bachy, Manon
Huang, Xingrong
Potier, Esther
Bensidhoum, Morad
Hoc, Thierry
A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title_full A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title_fullStr A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title_full_unstemmed A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title_short A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts
title_sort new microarchitecture-based parameter to predict the micromechanical properties of bone allografts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179528/
https://www.ncbi.nlm.nih.gov/pubmed/37176232
http://dx.doi.org/10.3390/ma16093349
work_keys_str_mv AT xiongzhuang anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT rouquierlea anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT chappardchristine anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT bachymanon anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT huangxingrong anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT potieresther anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT bensidhoummorad anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT hocthierry anewmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT xiongzhuang newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT rouquierlea newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT chappardchristine newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT bachymanon newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT huangxingrong newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT potieresther newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT bensidhoummorad newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts
AT hocthierry newmicroarchitecturebasedparametertopredictthemicromechanicalpropertiesofboneallografts