Cargando…

An Immersive Virtual Kitchen Training System for People with Multiple Sclerosis: A Development and Validation Study

Rehabilitation via virtual reality (VR) training tools allows repetitive, intensive, and task-specific practice in a controlled and safe environment. Our goal was to develop and validate a novel immersive VR system based on the practice of real-life activities in a kitchen environment in people with...

Descripción completa

Detalles Bibliográficos
Autores principales: Pau, Massimiliano, Cocco, Eleonora, Arippa, Federico, Casu, Giulia, Porta, Micaela, Menascu, Shay, Achiron, Anat, Kalron, Alon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179608/
https://www.ncbi.nlm.nih.gov/pubmed/37176662
http://dx.doi.org/10.3390/jcm12093222
Descripción
Sumario:Rehabilitation via virtual reality (VR) training tools allows repetitive, intensive, and task-specific practice in a controlled and safe environment. Our goal was to develop and validate a novel immersive VR system based on the practice of real-life activities in a kitchen environment in people with multiple sclerosis (pwMS) with upper-limb dysfunction. The novel immersive VR kitchen application includes several tasks, i.e., tidying up the kitchen, preparing a hamburger and soup meal, and dish washing. Following the development phase, the system was tested for an 8-week intervention period on a small sample of pwMS suffering from upper-limb dysfunction. The Suitability Evaluation Questionnaire for VR systems served as the primary outcome. The scores for enjoyment, sense of comfort with the system, feelings of success and control, realism, easy-to-understand instructions, assists in rehabilitation therapy, were between 4.0 and 4.6, indicating a high satisfaction. The scores for eye discomfort, dizziness, nausea, and disorientation during practice were between 2.8 and 1.3, indicating a low-to-moderate interference of the system. The virtual kitchen training system is feasible and safe for upper-limb training in pwMS and paves the way for future RCTs to examine the benefits of the system compared with standard care, thus improving the functionality of the upper limbs in pwMS.