Cargando…
1,5-Anhydro-D-Fructose Exhibits Satiety Effects via the Activation of Oxytocin Neurons in the Paraventricular Nucleus
1,5-Anhydro-D-fructose (1,5-AF) is a bioactive monosaccharide that is produced by the glycogenolysis in mammalians and is metabolized to 1,5-anhydro-D-glucitol (1,5-AG). 1,5-AG is used as a marker of glycemic control in diabetes patients. 1,5-AF has a variety of physiological activities, but its eff...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179633/ https://www.ncbi.nlm.nih.gov/pubmed/37175953 http://dx.doi.org/10.3390/ijms24098248 |
Sumario: | 1,5-Anhydro-D-fructose (1,5-AF) is a bioactive monosaccharide that is produced by the glycogenolysis in mammalians and is metabolized to 1,5-anhydro-D-glucitol (1,5-AG). 1,5-AG is used as a marker of glycemic control in diabetes patients. 1,5-AF has a variety of physiological activities, but its effects on energy metabolism, including feeding behavior, are unclarified. The present study examined whether 1,5-AF possesses the effect of satiety. Peroral administration of 1,5-AF, and not of 1,5-AG, suppressed daily food intake. Intracerebroventricular (ICV) administration of 1,5-AF also suppressed feeding. To investigate the neurons targeted by 1,5-AF, we investigated c-Fos expression in the hypothalamus and brain stem. ICV injection of 1,5-AF significantly increased c-Fos positive oxytocin neurons and mRNA expression of oxytocin in the paraventricular nucleus (PVN). Moreover, 1,5-AF increased cytosolic Ca(2+) concentration of oxytocin neurons in the PVN. Furthermore, the satiety effect of 1,5-AF was abolished in oxytocin knockout mice. These findings reveal that 1,5-AF activates PVN oxytocin neurons to suppress feeding, indicating its potential as the energy storage monitoring messenger to the hypothalamus for integrative regulation of energy metabolism. |
---|