Cargando…
Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020
Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this tim...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179682/ https://www.ncbi.nlm.nih.gov/pubmed/37159510 http://dx.doi.org/10.7554/eLife.82538 |
_version_ | 1785041155487956992 |
---|---|
author | Coppée, Romain Blanquart, François Jary, Aude Leducq, Valentin Ferré, Valentine Marie Franco Yusti, Anna Maria Daniel, Léna Charpentier, Charlotte Lebourgeois, Samuel Zafilaza, Karen Calvez, Vincent Descamps, Diane Marcelin, Anne-Geneviève Visseaux, Benoit Bridier-Nahmias, Antoine |
author_facet | Coppée, Romain Blanquart, François Jary, Aude Leducq, Valentin Ferré, Valentine Marie Franco Yusti, Anna Maria Daniel, Léna Charpentier, Charlotte Lebourgeois, Samuel Zafilaza, Karen Calvez, Vincent Descamps, Diane Marcelin, Anne-Geneviève Visseaux, Benoit Bridier-Nahmias, Antoine |
author_sort | Coppée, Romain |
collection | PubMed |
description | Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020. |
format | Online Article Text |
id | pubmed-10179682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-101796822023-05-13 Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 Coppée, Romain Blanquart, François Jary, Aude Leducq, Valentin Ferré, Valentine Marie Franco Yusti, Anna Maria Daniel, Léna Charpentier, Charlotte Lebourgeois, Samuel Zafilaza, Karen Calvez, Vincent Descamps, Diane Marcelin, Anne-Geneviève Visseaux, Benoit Bridier-Nahmias, Antoine eLife Epidemiology and Global Health Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020. eLife Sciences Publications, Ltd 2023-04-26 /pmc/articles/PMC10179682/ /pubmed/37159510 http://dx.doi.org/10.7554/eLife.82538 Text en © 2023, Coppée et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Epidemiology and Global Health Coppée, Romain Blanquart, François Jary, Aude Leducq, Valentin Ferré, Valentine Marie Franco Yusti, Anna Maria Daniel, Léna Charpentier, Charlotte Lebourgeois, Samuel Zafilaza, Karen Calvez, Vincent Descamps, Diane Marcelin, Anne-Geneviève Visseaux, Benoit Bridier-Nahmias, Antoine Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title | Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title_full | Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title_fullStr | Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title_full_unstemmed | Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title_short | Phylodynamics of SARS-CoV-2 in France, Europe, and the world in 2020 |
title_sort | phylodynamics of sars-cov-2 in france, europe, and the world in 2020 |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179682/ https://www.ncbi.nlm.nih.gov/pubmed/37159510 http://dx.doi.org/10.7554/eLife.82538 |
work_keys_str_mv | AT coppeeromain phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT blanquartfrancois phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT jaryaude phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT leducqvalentin phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT ferrevalentinemarie phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT francoyustiannamaria phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT daniellena phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT charpentiercharlotte phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT lebourgeoissamuel phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT zafilazakaren phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT calvezvincent phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT descampsdiane phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT marcelinannegenevieve phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT visseauxbenoit phylodynamicsofsarscov2infranceeuropeandtheworldin2020 AT bridiernahmiasantoine phylodynamicsofsarscov2infranceeuropeandtheworldin2020 |