Cargando…
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
The accurate prediction of drug–target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predict...
Autores principales: | Wang, Shudong, Song, Xuanmo, Zhang, Yuanyuan, Zhang, Kuijie, Liu, Yingye, Ren, Chuanru, Pang, Shanchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179712/ https://www.ncbi.nlm.nih.gov/pubmed/37176031 http://dx.doi.org/10.3390/ijms24098326 |
Ejemplares similares
-
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021) -
AMCSMMA: Predicting Small Molecule–miRNA Potential Associations Based on Accurate Matrix Completion
por: Wang, Shudong, et al.
Publicado: (2023) -
HSSG: Identification of Cancer Subtypes Based on Heterogeneity Score of A Single Gene
por: Pang, Shanchen, et al.
Publicado: (2022)