Cargando…

Antimicrobial Activity and Cytotoxicity of Prepolymer Allyl 2-cyanoacrylate and 2-Octyl Cyanoacrylate Mixture Adhesives for Topical Wound Closure

The development of a new skin adhesive that can be used inside and outside the body, which prevents infection and has fewer scars and less side effects, is currently attracting attention from the scientific community. To improve biocompatibility, prepolymer allyl 2-cyanoacrylate (PAC) and 2-octyl cy...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Soyeon, Hahm, Dae-Hyun, Choi, Yong-Bok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179742/
https://www.ncbi.nlm.nih.gov/pubmed/37176306
http://dx.doi.org/10.3390/ma16093427
Descripción
Sumario:The development of a new skin adhesive that can be used inside and outside the body, which prevents infection and has fewer scars and less side effects, is currently attracting attention from the scientific community. To improve biocompatibility, prepolymer allyl 2-cyanoacrylate (PAC) and 2-octyl cyanoacrylate (OC) were mixed in various proportions and tested for their therapeutic potential as skin adhesives. A series of skin adhesive samples prepared by mixing PAC, OC, and additives with % (w/w) ratios of 100:0:0, 0:100:0, 70:0:30, 40:30:30, and 30:40:30 were tested to determine their antimicrobial activity, cell cytotoxicity, and formaldehyde release. The additives include myristic acid and dibutyl sebacate as plasticizers and butylated hydroxyanisole as an antioxidant. It was observed that the samples containing 70% PAC (PAC7) or 40% PAC (PAC4) with 30% additives had the highest antimicrobial activities against various microbial cells and no cytotoxicity regarding in vitro fibroblast cell growth. In addition, these formulations of adhesive samples released formaldehyde within the levels permitted for medical devices. Taken together, the mixture of PAC and OC as a topical skin adhesive for wound closure was found to be biocompatible, mechanically stable and safe, as well as effective for wound healing.