Cargando…
Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites
Natural fiber reinforced composites are increasingly used to fabricate structural components prone to suffering low-velocity impacts. The low-velocity impact response of flax fabric reinforced composites under different impact energies is experimentally studied and numerically simulated. A multi-sca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179825/ https://www.ncbi.nlm.nih.gov/pubmed/37176371 http://dx.doi.org/10.3390/ma16093489 |
_version_ | 1785041189545705472 |
---|---|
author | Xiong, Xiaoshuang Wang, Zisheng Zhang, Zihao Li, Qiaomin Shen, Chen Fan, Fei Li, Xiang Chen, Mingzhang |
author_facet | Xiong, Xiaoshuang Wang, Zisheng Zhang, Zihao Li, Qiaomin Shen, Chen Fan, Fei Li, Xiang Chen, Mingzhang |
author_sort | Xiong, Xiaoshuang |
collection | PubMed |
description | Natural fiber reinforced composites are increasingly used to fabricate structural components prone to suffering low-velocity impacts. The low-velocity impact response of flax fabric reinforced composites under different impact energies is experimentally studied and numerically simulated. A multi-scale finite element analysis strategy for the progressive damage prediction of flax fabric reinforced composites is developed. Micro- and meso-scale analyses are conducted to predict the effective properties of the woven unit cell. Macro-scale analysis is carried out subsequently to predict the impact response of composite laminates using the results of micro- and meso-scale analyses as inputs. Simulation results and experimental results both show that most of the impact energy is absorbed by the specimens when the impact energy is lower than 4 J, and the absorption ratio of impact energy slightly increases with the increase in impact energy. On the contrary, a dramatic decrease occurs in the absorption ratio when the impact energy is 6 J, due to the severe damage to the specimen. In addition, simulation results indicate that matrix shear damage and interlaminar damage are the primary failure modes of composites under high impact energy. The numerical results of impact force, absorbed energy, and damage morphologies on both sides for all specimens show good agreement with the experimental results. |
format | Online Article Text |
id | pubmed-10179825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101798252023-05-13 Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites Xiong, Xiaoshuang Wang, Zisheng Zhang, Zihao Li, Qiaomin Shen, Chen Fan, Fei Li, Xiang Chen, Mingzhang Materials (Basel) Article Natural fiber reinforced composites are increasingly used to fabricate structural components prone to suffering low-velocity impacts. The low-velocity impact response of flax fabric reinforced composites under different impact energies is experimentally studied and numerically simulated. A multi-scale finite element analysis strategy for the progressive damage prediction of flax fabric reinforced composites is developed. Micro- and meso-scale analyses are conducted to predict the effective properties of the woven unit cell. Macro-scale analysis is carried out subsequently to predict the impact response of composite laminates using the results of micro- and meso-scale analyses as inputs. Simulation results and experimental results both show that most of the impact energy is absorbed by the specimens when the impact energy is lower than 4 J, and the absorption ratio of impact energy slightly increases with the increase in impact energy. On the contrary, a dramatic decrease occurs in the absorption ratio when the impact energy is 6 J, due to the severe damage to the specimen. In addition, simulation results indicate that matrix shear damage and interlaminar damage are the primary failure modes of composites under high impact energy. The numerical results of impact force, absorbed energy, and damage morphologies on both sides for all specimens show good agreement with the experimental results. MDPI 2023-04-30 /pmc/articles/PMC10179825/ /pubmed/37176371 http://dx.doi.org/10.3390/ma16093489 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xiong, Xiaoshuang Wang, Zisheng Zhang, Zihao Li, Qiaomin Shen, Chen Fan, Fei Li, Xiang Chen, Mingzhang Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title | Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title_full | Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title_fullStr | Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title_full_unstemmed | Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title_short | Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites |
title_sort | simulation and experiment on the low-velocity impact response of flax fabric reinforced composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179825/ https://www.ncbi.nlm.nih.gov/pubmed/37176371 http://dx.doi.org/10.3390/ma16093489 |
work_keys_str_mv | AT xiongxiaoshuang simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT wangzisheng simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT zhangzihao simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT liqiaomin simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT shenchen simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT fanfei simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT lixiang simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites AT chenmingzhang simulationandexperimentonthelowvelocityimpactresponseofflaxfabricreinforcedcomposites |