Cargando…
Low-Temperature Terpolymerizable Benzoxazine Monomer Bearing Norbornene and Furan Groups: Synthesis, Characterization, Polymerization, and Properties of Its Polymer
There is an urgency to produce novel high-performance resins to support the rapid development of the aerospace field and the electronic industry. In the present work, we designed and consequently synthesized a benzoxazine monomer (oHPNI-fa) bearing both norbornene and furan groups through the flexib...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179839/ https://www.ncbi.nlm.nih.gov/pubmed/37175354 http://dx.doi.org/10.3390/molecules28093944 |
Sumario: | There is an urgency to produce novel high-performance resins to support the rapid development of the aerospace field and the electronic industry. In the present work, we designed and consequently synthesized a benzoxazine monomer (oHPNI-fa) bearing both norbornene and furan groups through the flexible benzoxazine structural design capability. The molecular structure of oHPNI-fa was verified by the combination characterization of nuclear magnetic resonance spectrum, FT-IR technology, and high-resolution mass spectrum. The thermally activated terpolymerization was monitored by in situ FT-IR as well as differential scanning calorimetry (DSC). Moreover, the low-temperature-curing characteristics of oHPNI-fa have also been revealed and discussed in the current study. Furthermore, the curing kinetics of the oHPNI-fa were investigated by the Kissinger and Ozawa methods. The resulting highly cross-linked thermoset based on oHPNI-fa showed excellent thermal stability as well as flame retardancy (T(d10) of 425 °C, THR of 4.9 KJg(−1)). The strategy for molecular design utilized in the current work gives a guide to the development of high-performance resins which can potentially be applied in the aerospace and electronics industries. |
---|