Cargando…
Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing
In the past few decades, solidification/stabilization (S/S) technology has been put forward for the purpose of improving soil strength and inhibiting contaminant migration in the remediation of heavy metal-contaminated sites. Cement, lime, and fly ash are among the most common and effective binders...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179848/ https://www.ncbi.nlm.nih.gov/pubmed/37176327 http://dx.doi.org/10.3390/ma16093444 |
_version_ | 1785041195070652416 |
---|---|
author | Liu, Jingjing Wu, Dongbiao Tan, Xiaohui Yu, Peng Xu, Long |
author_facet | Liu, Jingjing Wu, Dongbiao Tan, Xiaohui Yu, Peng Xu, Long |
author_sort | Liu, Jingjing |
collection | PubMed |
description | In the past few decades, solidification/stabilization (S/S) technology has been put forward for the purpose of improving soil strength and inhibiting contaminant migration in the remediation of heavy metal-contaminated sites. Cement, lime, and fly ash are among the most common and effective binders to treat contaminated soils. During S/S processing, the main interactions that are responsible for improving the soil’s behaviors can be summarized as gelification, self-hardening, and aggregation. Currently, precipitation, incorporation, and substitution have been commonly accepted as the predominant immobilization mechanisms for heavy metal ions and have been directly verified by some micro-testing techniques. While replacement of Ca(2+)/Si(4+) in the cementitious products and physical encapsulation remain controversial, which is proposed dependent on the indirect results. Lead and zinc can retard both the initial and final setting times of cement hydration, while chromium can accelerate the initial cement hydration. Though cadmium can shorten the initial setting time, further cement hydration will be inhibited. While for mercury, the interference impact is closely associated with its adapted anion. It should be pointed out that obtaining a better understanding of the remediation mechanism involved in S/S processing will contribute to facilitating technical improvement, further extension, and application. |
format | Online Article Text |
id | pubmed-10179848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101798482023-05-13 Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing Liu, Jingjing Wu, Dongbiao Tan, Xiaohui Yu, Peng Xu, Long Materials (Basel) Review In the past few decades, solidification/stabilization (S/S) technology has been put forward for the purpose of improving soil strength and inhibiting contaminant migration in the remediation of heavy metal-contaminated sites. Cement, lime, and fly ash are among the most common and effective binders to treat contaminated soils. During S/S processing, the main interactions that are responsible for improving the soil’s behaviors can be summarized as gelification, self-hardening, and aggregation. Currently, precipitation, incorporation, and substitution have been commonly accepted as the predominant immobilization mechanisms for heavy metal ions and have been directly verified by some micro-testing techniques. While replacement of Ca(2+)/Si(4+) in the cementitious products and physical encapsulation remain controversial, which is proposed dependent on the indirect results. Lead and zinc can retard both the initial and final setting times of cement hydration, while chromium can accelerate the initial cement hydration. Though cadmium can shorten the initial setting time, further cement hydration will be inhibited. While for mercury, the interference impact is closely associated with its adapted anion. It should be pointed out that obtaining a better understanding of the remediation mechanism involved in S/S processing will contribute to facilitating technical improvement, further extension, and application. MDPI 2023-04-28 /pmc/articles/PMC10179848/ /pubmed/37176327 http://dx.doi.org/10.3390/ma16093444 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Liu, Jingjing Wu, Dongbiao Tan, Xiaohui Yu, Peng Xu, Long Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title | Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title_full | Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title_fullStr | Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title_full_unstemmed | Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title_short | Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing |
title_sort | review of the interactions between conventional cementitious materials and heavy metal ions in stabilization/solidification processing |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179848/ https://www.ncbi.nlm.nih.gov/pubmed/37176327 http://dx.doi.org/10.3390/ma16093444 |
work_keys_str_mv | AT liujingjing reviewoftheinteractionsbetweenconventionalcementitiousmaterialsandheavymetalionsinstabilizationsolidificationprocessing AT wudongbiao reviewoftheinteractionsbetweenconventionalcementitiousmaterialsandheavymetalionsinstabilizationsolidificationprocessing AT tanxiaohui reviewoftheinteractionsbetweenconventionalcementitiousmaterialsandheavymetalionsinstabilizationsolidificationprocessing AT yupeng reviewoftheinteractionsbetweenconventionalcementitiousmaterialsandheavymetalionsinstabilizationsolidificationprocessing AT xulong reviewoftheinteractionsbetweenconventionalcementitiousmaterialsandheavymetalionsinstabilizationsolidificationprocessing |