Cargando…
Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment
This study systematically investigated the performance and microstructure characterization of cryogenic rolling (CR) and room-temperature rolling (RTR) Al–Mg–Si alloys. The result showed that the hardness of the CR alloys decreased at the early aging stage, but that the hardness of the RTR alloys in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179916/ https://www.ncbi.nlm.nih.gov/pubmed/37176218 http://dx.doi.org/10.3390/ma16093336 |
_version_ | 1785041211301560320 |
---|---|
author | Wang, Xucheng Liu, Yu Huang, Yuanchun |
author_facet | Wang, Xucheng Liu, Yu Huang, Yuanchun |
author_sort | Wang, Xucheng |
collection | PubMed |
description | This study systematically investigated the performance and microstructure characterization of cryogenic rolling (CR) and room-temperature rolling (RTR) Al–Mg–Si alloys. The result showed that the hardness of the CR alloys decreased at the early aging stage, but that the hardness of the RTR alloys increased at the early aging stage. Retrogression phenomena were apparent in the CR alloys at the early aging stage. Despite undergoing the same solid solution treatment, a few substructures were still observed in the CR alloys, and the degree of recrystallization in the CR alloys was significantly inferior to that in the RTR alloys. After aging for 50 h, the strength and precipitates’ density in the CR 75 alloy were higher than that in the other alloys; this indicated that the substructures were beneficial to precipitation and precipitate growth. A precipitation strength model was employed to illustrate the precipitation contribution at different aging stages. The results showed that the CR 75 alloy obtained the strongest precipitation strengthening. |
format | Online Article Text |
id | pubmed-10179916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101799162023-05-13 Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment Wang, Xucheng Liu, Yu Huang, Yuanchun Materials (Basel) Article This study systematically investigated the performance and microstructure characterization of cryogenic rolling (CR) and room-temperature rolling (RTR) Al–Mg–Si alloys. The result showed that the hardness of the CR alloys decreased at the early aging stage, but that the hardness of the RTR alloys increased at the early aging stage. Retrogression phenomena were apparent in the CR alloys at the early aging stage. Despite undergoing the same solid solution treatment, a few substructures were still observed in the CR alloys, and the degree of recrystallization in the CR alloys was significantly inferior to that in the RTR alloys. After aging for 50 h, the strength and precipitates’ density in the CR 75 alloy were higher than that in the other alloys; this indicated that the substructures were beneficial to precipitation and precipitate growth. A precipitation strength model was employed to illustrate the precipitation contribution at different aging stages. The results showed that the CR 75 alloy obtained the strongest precipitation strengthening. MDPI 2023-04-24 /pmc/articles/PMC10179916/ /pubmed/37176218 http://dx.doi.org/10.3390/ma16093336 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xucheng Liu, Yu Huang, Yuanchun Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title | Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title_full | Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title_fullStr | Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title_full_unstemmed | Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title_short | Improving Precipitation in Cryogenic Rolling 6016 Aluminum Alloys during Aging Treatment |
title_sort | improving precipitation in cryogenic rolling 6016 aluminum alloys during aging treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179916/ https://www.ncbi.nlm.nih.gov/pubmed/37176218 http://dx.doi.org/10.3390/ma16093336 |
work_keys_str_mv | AT wangxucheng improvingprecipitationincryogenicrolling6016aluminumalloysduringagingtreatment AT liuyu improvingprecipitationincryogenicrolling6016aluminumalloysduringagingtreatment AT huangyuanchun improvingprecipitationincryogenicrolling6016aluminumalloysduringagingtreatment |