Cargando…

Improving Theaflavin-3,3′-digallate Production Efficiency Optimization by Transition State Conformation of Polyphenol Oxidase

Theaflavins (TFs) are good for health because of their bioactivities. Enzymatic synthesis of TFs has garnered much attention; however, the source and activity of the enzymes needed limit their wide application. In this study, a microbial polyphenol oxidase from Bacillus megaterium was screened for t...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Ying, Gao, Changzheng, Song, Wei, Wei, Wanqing, Chen, Xiulai, Gao, Cong, Liu, Jia, Wu, Jing, Liu, Liming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179947/
https://www.ncbi.nlm.nih.gov/pubmed/37175239
http://dx.doi.org/10.3390/molecules28093831
Descripción
Sumario:Theaflavins (TFs) are good for health because of their bioactivities. Enzymatic synthesis of TFs has garnered much attention; however, the source and activity of the enzymes needed limit their wide application. In this study, a microbial polyphenol oxidase from Bacillus megaterium was screened for the synthesis of theaflavin-3,3′-digallate (TFDG). Based on structural and mechanistic analyses of the enzyme, the O-O bond dissociation was identified as the rate-determining step. To address this issue, a transition state (TS) conformation optimization strategy was adopted to stabilize the spatial conformation of the O-O bond dissociation, which improved the catalytic efficiency of tyrosinase. Under the optimum transformation conditions of pH 4.0, temperature 25 °C, (−)-epigallocatechin gallate/epicatechin gallate molar ratio of 2:1, and time of 30 min, Mu(4) (BmTyr(V218A/R209S)) produced 960.36 mg/L TFDG with a 44.22% conversion rate, which was 6.35-fold higher than that of the wild type. Thus, the method established has great potential in the synthesis of TFDG and other TFs.