Cargando…

Effect of the Second Phases on Composite Spinning-Extrusion Forming and Mechanical Properties of Al–Cu–Li Alloy

The aim of this work is to investigate the effect of different second phases on the composite spinning-extrusion forming and mechanical properties of Al–Cu–Li alloy. With that purpose, four kinds of second phases blanks were controlled using preheating treatment, composite spinning-extrusion forming...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Huaqiang, Shi, Dongfeng, Zheng, Ying, Zhang, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180085/
https://www.ncbi.nlm.nih.gov/pubmed/37176456
http://dx.doi.org/10.3390/ma16093573
Descripción
Sumario:The aim of this work is to investigate the effect of different second phases on the composite spinning-extrusion forming and mechanical properties of Al–Cu–Li alloy. With that purpose, four kinds of second phases blanks were controlled using preheating treatment, composite spinning-extrusion forming and mechanical properties test. Then, the correlation between the second phases and mechanical properties was further analyzed using electron backscattered diffraction and transmission electron microscopy. The results indicated that different second phases of Al–Cu–Li alloy can be regulated via reasonable preheating treatment. In addition, different second phases in the blank have various influences on composite spinning-extrusion forming, microstructure and mechanical properties of cylindrical parts. Dissolving the coarse second phases particles and precipitating the Al(3)Zr dispersoid in the blank can effectively improve the composite spinning-extrusion forming, inhibit the abnormal growth of recrystallized grains, and significantly enhance the mechanical properties of cylindrical parts with ribs. After regulation, the average grain size of the cylindrical parts is refined from about 90 μm to about 45 μm, and the average diameter of T(1) phase is refined from 107 nm to 77 nm. In addition, the ultimate tensile strength, yield strength and elongation of cylindrical parts are increased from 555 MPa to 588 MPa, 530 MPa to 564 MPa, and 9.1% to 11%, respectively.