Cargando…
Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications
Additive manufacturing technologies have numerous advantages over conventional technologies; nevertheless, their production process can lead to high residual stresses and distortions in the produced parts. The use of numerical simulation models is presented as a solution to predict the deformations...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180210/ https://www.ncbi.nlm.nih.gov/pubmed/37176428 http://dx.doi.org/10.3390/ma16093549 |
_version_ | 1785041282314272768 |
---|---|
author | Ferreira, Nuno Miguel Vila Pouca, Maria Fernandes, Carlos Seabra, Jorge Lesiuk, Grzegorz Parente, Marco Jesus, Abílio |
author_facet | Ferreira, Nuno Miguel Vila Pouca, Maria Fernandes, Carlos Seabra, Jorge Lesiuk, Grzegorz Parente, Marco Jesus, Abílio |
author_sort | Ferreira, Nuno Miguel |
collection | PubMed |
description | Additive manufacturing technologies have numerous advantages over conventional technologies; nevertheless, their production process can lead to high residual stresses and distortions in the produced parts. The use of numerical simulation models is presented as a solution to predict the deformations and residual stresses resulting from the printing process. This study aimed to predict the tensions and distortions imposed in the gear repair process by directed energy deposition (DED). First, the case study proposed by National Institute of Standards and Technology (NIST) was analyzed to validate the model and the numerically obtained results. Subsequently, a parametric study of the influence of some of the parameters of DED technology was carried out. The results obtained for the validation of the NIST benchmark bridge model were in agreement with the results obtained experimentally. In turn, the results obtained from the parametric study were almost always in line with what is theoretically expected; however, some results were not very clear and consistent. The results obtained help to clarify the influence of certain printing parameters. The proposed model allowed accounting for the effect of residual stresses in calculating the stresses resulting from gear loading, which are essential data for fatigue analysis. Modeling and simulating a deposition process can be challenging due to several factors, including calibrating the model, managing the computational cost, accounting for boundary conditions, and accurately representing material properties. This paper aimed to carefully address these parameters in two case studies, towards reliable simulations. |
format | Online Article Text |
id | pubmed-10180210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101802102023-05-13 Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications Ferreira, Nuno Miguel Vila Pouca, Maria Fernandes, Carlos Seabra, Jorge Lesiuk, Grzegorz Parente, Marco Jesus, Abílio Materials (Basel) Article Additive manufacturing technologies have numerous advantages over conventional technologies; nevertheless, their production process can lead to high residual stresses and distortions in the produced parts. The use of numerical simulation models is presented as a solution to predict the deformations and residual stresses resulting from the printing process. This study aimed to predict the tensions and distortions imposed in the gear repair process by directed energy deposition (DED). First, the case study proposed by National Institute of Standards and Technology (NIST) was analyzed to validate the model and the numerically obtained results. Subsequently, a parametric study of the influence of some of the parameters of DED technology was carried out. The results obtained for the validation of the NIST benchmark bridge model were in agreement with the results obtained experimentally. In turn, the results obtained from the parametric study were almost always in line with what is theoretically expected; however, some results were not very clear and consistent. The results obtained help to clarify the influence of certain printing parameters. The proposed model allowed accounting for the effect of residual stresses in calculating the stresses resulting from gear loading, which are essential data for fatigue analysis. Modeling and simulating a deposition process can be challenging due to several factors, including calibrating the model, managing the computational cost, accounting for boundary conditions, and accurately representing material properties. This paper aimed to carefully address these parameters in two case studies, towards reliable simulations. MDPI 2023-05-05 /pmc/articles/PMC10180210/ /pubmed/37176428 http://dx.doi.org/10.3390/ma16093549 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ferreira, Nuno Miguel Vila Pouca, Maria Fernandes, Carlos Seabra, Jorge Lesiuk, Grzegorz Parente, Marco Jesus, Abílio Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title | Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title_full | Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title_fullStr | Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title_full_unstemmed | Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title_short | Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications |
title_sort | direct energy deposition parametric simulation investigation in gear repair applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180210/ https://www.ncbi.nlm.nih.gov/pubmed/37176428 http://dx.doi.org/10.3390/ma16093549 |
work_keys_str_mv | AT ferreiranunomiguel directenergydepositionparametricsimulationinvestigationingearrepairapplications AT vilapoucamaria directenergydepositionparametricsimulationinvestigationingearrepairapplications AT fernandescarlos directenergydepositionparametricsimulationinvestigationingearrepairapplications AT seabrajorge directenergydepositionparametricsimulationinvestigationingearrepairapplications AT lesiukgrzegorz directenergydepositionparametricsimulationinvestigationingearrepairapplications AT parentemarco directenergydepositionparametricsimulationinvestigationingearrepairapplications AT jesusabilio directenergydepositionparametricsimulationinvestigationingearrepairapplications |