Cargando…
Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview
Aerogels are highly porous materials with fascinating properties prepared using sol-gel chemistry. Due to their unique physical and chemical properties, aerogels are recognized as potential candidates for diverse applications, including thermal insulation, sensor, environmental remediation, etc. Des...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180228/ https://www.ncbi.nlm.nih.gov/pubmed/37177045 http://dx.doi.org/10.3390/nano13091498 |
_version_ | 1785041286712000512 |
---|---|
author | Meti, Puttavva Wang, Qi Mahadik, D. B. Lee, Kyu-Yeon Gong, Young-Dae Park, Hyung-Ho |
author_facet | Meti, Puttavva Wang, Qi Mahadik, D. B. Lee, Kyu-Yeon Gong, Young-Dae Park, Hyung-Ho |
author_sort | Meti, Puttavva |
collection | PubMed |
description | Aerogels are highly porous materials with fascinating properties prepared using sol-gel chemistry. Due to their unique physical and chemical properties, aerogels are recognized as potential candidates for diverse applications, including thermal insulation, sensor, environmental remediation, etc. Despite these applications, aerogels are not routinely found in our daily life because they are fragile and have highly limited scale-up productions. It remains extremely challenging to improve the mechanical properties of aerogels without adversely affecting their other properties. To boost the practical applications, it is necessary to develop efficient, low-cost methods to produce aerogels in a sustainable way. This comprehensive review surveys the progress in the development of aerogels and their classification based on the chemical composition of the network. Recent achievements in organic, inorganic, and hybrid materials and their outstanding physical properties are discussed. The major focus of this review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. We begin with a brief discussion of the fundamental issues in silica aerogels and then proceed to provide an overview of the synthesis of organic and hybrid aerogels from various precursors. Organic aerogels show promising results with excellent mechanical strength, but there are still several issues that need further exploration. Finally, growing points and perspectives of the aerogel field are summarized. |
format | Online Article Text |
id | pubmed-10180228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101802282023-05-13 Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview Meti, Puttavva Wang, Qi Mahadik, D. B. Lee, Kyu-Yeon Gong, Young-Dae Park, Hyung-Ho Nanomaterials (Basel) Review Aerogels are highly porous materials with fascinating properties prepared using sol-gel chemistry. Due to their unique physical and chemical properties, aerogels are recognized as potential candidates for diverse applications, including thermal insulation, sensor, environmental remediation, etc. Despite these applications, aerogels are not routinely found in our daily life because they are fragile and have highly limited scale-up productions. It remains extremely challenging to improve the mechanical properties of aerogels without adversely affecting their other properties. To boost the practical applications, it is necessary to develop efficient, low-cost methods to produce aerogels in a sustainable way. This comprehensive review surveys the progress in the development of aerogels and their classification based on the chemical composition of the network. Recent achievements in organic, inorganic, and hybrid materials and their outstanding physical properties are discussed. The major focus of this review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. We begin with a brief discussion of the fundamental issues in silica aerogels and then proceed to provide an overview of the synthesis of organic and hybrid aerogels from various precursors. Organic aerogels show promising results with excellent mechanical strength, but there are still several issues that need further exploration. Finally, growing points and perspectives of the aerogel field are summarized. MDPI 2023-04-27 /pmc/articles/PMC10180228/ /pubmed/37177045 http://dx.doi.org/10.3390/nano13091498 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Meti, Puttavva Wang, Qi Mahadik, D. B. Lee, Kyu-Yeon Gong, Young-Dae Park, Hyung-Ho Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title | Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title_full | Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title_fullStr | Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title_full_unstemmed | Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title_short | Evolutionary Progress of Silica Aerogels and Their Classification Based on Composition: An Overview |
title_sort | evolutionary progress of silica aerogels and their classification based on composition: an overview |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180228/ https://www.ncbi.nlm.nih.gov/pubmed/37177045 http://dx.doi.org/10.3390/nano13091498 |
work_keys_str_mv | AT metiputtavva evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview AT wangqi evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview AT mahadikdb evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview AT leekyuyeon evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview AT gongyoungdae evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview AT parkhyungho evolutionaryprogressofsilicaaerogelsandtheirclassificationbasedoncompositionanoverview |