Cargando…
Nonlinear Finite Element Model for Bending Analysis of Functionally-Graded Porous Circular/Annular Micro-Plates under Thermomechanical Loads Using Quasi-3D Reddy Third-Order Plate Theory
A nonlinear finite element model for axisymmetric bending of micro circular/annular plates under thermal and mechanical loading was developed using quasi-3D Reddy third-order shear deformation theory. The developed finite element model accounts for a variation of material constituents utilizing a po...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180308/ https://www.ncbi.nlm.nih.gov/pubmed/37176387 http://dx.doi.org/10.3390/ma16093505 |
Sumario: | A nonlinear finite element model for axisymmetric bending of micro circular/annular plates under thermal and mechanical loading was developed using quasi-3D Reddy third-order shear deformation theory. The developed finite element model accounts for a variation of material constituents utilizing a power-law distribution of a two-constituent material, three different porosity distributions through plate thickness, and geometrical nonlinearity. The modified couple stress theory was utilized to account for the strain gradient effects using a single material length scale parameter. Three different types of porosity distributions that have the same overall volume fraction but different enhanced areas were considered as a form of cosine functions. The effects of the material and porosity distribution, microstructure-dependency, the geometric nonlinearity, and various boundary conditions on the bending response of functionally-graded porous axisymmetric microplates under thermomechanical loads were studied using the developed nonlinear finite element model. |
---|