Cargando…
Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study
In this study, the microstructure and performance of newly designed dual-phase steel (DP590) after joining by flash butt welding (FBW) for vehicle wheel rims was analysed and compared by two simulations, i.e., physical simulation and numerical simulation, due to the high acceptance of these two meth...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180431/ https://www.ncbi.nlm.nih.gov/pubmed/37176395 http://dx.doi.org/10.3390/ma16093513 |
_version_ | 1785041333469052928 |
---|---|
author | Song, Jingwen Zhu, Lisong Wang, Jun Lu, Yao Ma, Cheng Han, Jian Jiang, Zhengyi |
author_facet | Song, Jingwen Zhu, Lisong Wang, Jun Lu, Yao Ma, Cheng Han, Jian Jiang, Zhengyi |
author_sort | Song, Jingwen |
collection | PubMed |
description | In this study, the microstructure and performance of newly designed dual-phase steel (DP590) after joining by flash butt welding (FBW) for vehicle wheel rims was analysed and compared by two simulations, i.e., physical simulation and numerical simulation, due to the high acceptance of these two methodologies. Physical simulation is regarded as a thermal–mechanical solution conducted by the Gleeble 3500 simulator and which can distribute the heat-affected zone (HAZ) of the obtained weld joint into four typical HAZs. These are coarse-grained HAZ, fine-grained HAZ, inter-critical HAZ and sub-critical HAZ. A combination of ferrite and tempered martensite leads to the softening behaviour at the sub-critical HAZ of DP590, which is verified to be the weakest area, and influences the final performance due to ~9% reduction of hardness and tensile strength. The numerical simulation, relying on finite element method (FEM) analysis, can distinguish the temperature distribution, which helps us to understand the relationship between the temperature distribution and real microstructure/performance. Based on this study, the combination of physical and numerical simulations can be used to optimise the flash butt welding parameters (flash and butt processes) from the points of temperature distribution (varied areas), microstructure and performance, which are guidelines for the investigation of flash butt welding for innovative materials. |
format | Online Article Text |
id | pubmed-10180431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101804312023-05-13 Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study Song, Jingwen Zhu, Lisong Wang, Jun Lu, Yao Ma, Cheng Han, Jian Jiang, Zhengyi Materials (Basel) Article In this study, the microstructure and performance of newly designed dual-phase steel (DP590) after joining by flash butt welding (FBW) for vehicle wheel rims was analysed and compared by two simulations, i.e., physical simulation and numerical simulation, due to the high acceptance of these two methodologies. Physical simulation is regarded as a thermal–mechanical solution conducted by the Gleeble 3500 simulator and which can distribute the heat-affected zone (HAZ) of the obtained weld joint into four typical HAZs. These are coarse-grained HAZ, fine-grained HAZ, inter-critical HAZ and sub-critical HAZ. A combination of ferrite and tempered martensite leads to the softening behaviour at the sub-critical HAZ of DP590, which is verified to be the weakest area, and influences the final performance due to ~9% reduction of hardness and tensile strength. The numerical simulation, relying on finite element method (FEM) analysis, can distinguish the temperature distribution, which helps us to understand the relationship between the temperature distribution and real microstructure/performance. Based on this study, the combination of physical and numerical simulations can be used to optimise the flash butt welding parameters (flash and butt processes) from the points of temperature distribution (varied areas), microstructure and performance, which are guidelines for the investigation of flash butt welding for innovative materials. MDPI 2023-05-03 /pmc/articles/PMC10180431/ /pubmed/37176395 http://dx.doi.org/10.3390/ma16093513 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Jingwen Zhu, Lisong Wang, Jun Lu, Yao Ma, Cheng Han, Jian Jiang, Zhengyi Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title | Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title_full | Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title_fullStr | Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title_full_unstemmed | Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title_short | Physical Simulation and Numerical Simulation of Flash Butt Welding for Innovative Dual Phase Steel DP590: A Comparative Study |
title_sort | physical simulation and numerical simulation of flash butt welding for innovative dual phase steel dp590: a comparative study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180431/ https://www.ncbi.nlm.nih.gov/pubmed/37176395 http://dx.doi.org/10.3390/ma16093513 |
work_keys_str_mv | AT songjingwen physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT zhulisong physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT wangjun physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT luyao physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT macheng physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT hanjian physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy AT jiangzhengyi physicalsimulationandnumericalsimulationofflashbuttweldingforinnovativedualphasesteeldp590acomparativestudy |