Cargando…
Facial Expression Recognition Methods in the Wild Based on Fusion Feature of Attention Mechanism and LBP
Facial expression methods play a vital role in human–computer interaction and other fields, but there are factors such as occlusion, illumination, and pose changes in wild facial recognition, as well as category imbalances between different datasets, that result in large variations in recognition ra...
Autores principales: | Liao, Jun, Lin, Yuanchang, Ma, Tengyun, He, Songxiying, Liu, Xiaofang, He, Guotian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180539/ https://www.ncbi.nlm.nih.gov/pubmed/37177408 http://dx.doi.org/10.3390/s23094204 |
Ejemplares similares
-
Facial Expression Recognition with LBP and ORB Features
por: Niu, Ben, et al.
Publicado: (2021) -
Facial Feature Extraction Using a Symmetric Inline Matrix-LBP Variant for Emotion Recognition
por: Babu, Eaby Kollonoor, et al.
Publicado: (2022) -
Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition
por: Jia, Qi, et al.
Publicado: (2015) -
Modeling and Optimization of Sensitivity and Creep for Multi-Component Sensing Materials
por: Bi, Gangping, et al.
Publicado: (2023) -
Occlusion facial expression recognition based on feature fusion residual attention network
por: Chen, Yuekun, et al.
Publicado: (2023)