Cargando…
Developing forecasting model for future pandemic applications based on COVID-19 data 2020–2022
Improving forecasting particularly time series forecasting accuracy, efficiency and precisely become crucial for the authorities to forecast, monitor, and prevent the COVID-19 cases so that its spread can be controlled more effectively. However, the results obtained from prediction models are inaccu...
Autores principales: | Wan Mohamad Nawi, Wan Imanul Aisyah, K. Abdul Hamid, Abdul Aziz, Lola, Muhamad Safiih, Zakaria, Syerrina, Aruchunan, Elayaraja, Gobithaasan, R. U., Zainuddin, Nurul Hila, Mustafa, Wan Azani, Abdullah, Mohd Lazim, Mokhtar, Nor Aieni, Abdullah, Mohd Tajuddin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180663/ https://www.ncbi.nlm.nih.gov/pubmed/37172040 http://dx.doi.org/10.1371/journal.pone.0285407 |
Ejemplares similares
-
Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020–2022
por: K Abdul Hamid, Abdul Aziz, et al.
Publicado: (2023) -
Assessing the sustainability of the homestay industry for the East Coast of Malaysia using the Delphi approach
por: Zamzuki, Fatin Amira, et al.
Publicado: (2023) -
Enhancing COVID-19 Classification Accuracy with a Hybrid SVM-LR Model
por: Nordin, Noor Ilanie, et al.
Publicado: (2023) -
H. pylori Related Atrophic Gastritis Detection Using Enhanced Convolution Neural Network (CNN) Learner
por: Yacob, Yasmin Mohd, et al.
Publicado: (2023) -
In Vitro Immunomodulatory Activity of Aqueous Quercus infectoria Gall Extract
por: Wan-Nor-Amilah, Wan Abdul Wahab, et al.
Publicado: (2021)