Cargando…
The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance
The present work explored alkali–treated coconut petiole fibers (ACPFs) characterization and the effect of fiber loadings on the mechanical properties of poly (lactic acid) (PLA)/ACPF composites for the first time. The physical, mechanical, and interfacial properties, as well as the morphology of th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180731/ https://www.ncbi.nlm.nih.gov/pubmed/37177346 http://dx.doi.org/10.3390/polym15092200 |
_version_ | 1785041404972498944 |
---|---|
author | Fu, Shiqiang Wu, Hongwu Zhu, Kang Zhao, Zhouxiang Liang, Zhifang |
author_facet | Fu, Shiqiang Wu, Hongwu Zhu, Kang Zhao, Zhouxiang Liang, Zhifang |
author_sort | Fu, Shiqiang |
collection | PubMed |
description | The present work explored alkali–treated coconut petiole fibers (ACPFs) characterization and the effect of fiber loadings on the mechanical properties of poly (lactic acid) (PLA)/ACPF composites for the first time. The physical, mechanical, and interfacial properties, as well as the morphology of the ACPFs were reported. It was found that ACPFs with a density of 0.92 g/cm(3) have average tensile strength and tensile modulus equal to 355.77 MPa and 5212.36 MPa. The interfacial strength between ACPFs and PLA was high (14.06 MPa), attributed to the micro–sized holes on the fibers, as established from SEM micrographs. Then composites with varying fiber loadings were fabricated by melt–blending and compression molding. The mechanical (tensile, flexural, and impact) performance of composites was reported. Based on the high interfacial strength between fibers and PLA and the unique “spiral” structure of fibers, the composites reached a high impact strength of 8.2 kJ/m(2) and flexural modulus of 6959.70 MPa at 50 wt.%, representing 150% and 50% improvement relative to pure PLA. |
format | Online Article Text |
id | pubmed-10180731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101807312023-05-13 The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance Fu, Shiqiang Wu, Hongwu Zhu, Kang Zhao, Zhouxiang Liang, Zhifang Polymers (Basel) Article The present work explored alkali–treated coconut petiole fibers (ACPFs) characterization and the effect of fiber loadings on the mechanical properties of poly (lactic acid) (PLA)/ACPF composites for the first time. The physical, mechanical, and interfacial properties, as well as the morphology of the ACPFs were reported. It was found that ACPFs with a density of 0.92 g/cm(3) have average tensile strength and tensile modulus equal to 355.77 MPa and 5212.36 MPa. The interfacial strength between ACPFs and PLA was high (14.06 MPa), attributed to the micro–sized holes on the fibers, as established from SEM micrographs. Then composites with varying fiber loadings were fabricated by melt–blending and compression molding. The mechanical (tensile, flexural, and impact) performance of composites was reported. Based on the high interfacial strength between fibers and PLA and the unique “spiral” structure of fibers, the composites reached a high impact strength of 8.2 kJ/m(2) and flexural modulus of 6959.70 MPa at 50 wt.%, representing 150% and 50% improvement relative to pure PLA. MDPI 2023-05-05 /pmc/articles/PMC10180731/ /pubmed/37177346 http://dx.doi.org/10.3390/polym15092200 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fu, Shiqiang Wu, Hongwu Zhu, Kang Zhao, Zhouxiang Liang, Zhifang The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title | The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title_full | The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title_fullStr | The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title_full_unstemmed | The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title_short | The Unique Morphology of Coconut Petiole Fibers Facilitates the Fabrication of Plant Composites with High Impact Performance |
title_sort | unique morphology of coconut petiole fibers facilitates the fabrication of plant composites with high impact performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180731/ https://www.ncbi.nlm.nih.gov/pubmed/37177346 http://dx.doi.org/10.3390/polym15092200 |
work_keys_str_mv | AT fushiqiang theuniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT wuhongwu theuniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT zhukang theuniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT zhaozhouxiang theuniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT liangzhifang theuniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT fushiqiang uniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT wuhongwu uniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT zhukang uniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT zhaozhouxiang uniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance AT liangzhifang uniquemorphologyofcoconutpetiolefibersfacilitatesthefabricationofplantcompositeswithhighimpactperformance |