Cargando…
Harnessing Data Augmentation and Normalization Preprocessing to Improve the Performance of Chemical Reaction Predictions of Data-Driven Model
As a template-free, data-driven methodology, the molecular transformer model provides an alternative by which to predict the outcome of chemical reactions and design the route of the retrosynthetic plane in the field of organic synthesis and polymer chemistry. However, in consideration of the small...
Autores principales: | Zhang, Boyu, Lin, Jiaping, Du, Lei, Zhang, Liangshun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180765/ https://www.ncbi.nlm.nih.gov/pubmed/37177370 http://dx.doi.org/10.3390/polym15092224 |
Ejemplares similares
-
Data preprocessing in data mining
por: García, Salvador, et al.
Publicado: (2015) -
Significant variation in the performance of DNA methylation predictors across data preprocessing and normalization strategies
por: Ori, Anil P. S., et al.
Publicado: (2022) -
A data-driven approach to preprocessing Illumina 450K methylation array data
por: Pidsley, Ruth, et al.
Publicado: (2013) -
Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management
por: Cofre-Martel, Sergio, et al.
Publicado: (2021) -
A Data-Driven Preprocessing Framework for Atrial Fibrillation Intracardiac Electrocardiogram Analysis
por: Kong, Xiangzhen, et al.
Publicado: (2023)