Cargando…

The Kirkwood–Riseman Model of Polymer Solution Dynamics Is Qualitatively Correct

The Rouse model is the foundational basis of much of modern polymer physics. The period alternative, the Kirkwood–Riseman model, is rarely mentioned in modern monographs. The models are qualitatively different. The models do not agree as to how many internal modes a polymer molecule has. In the Kirk...

Descripción completa

Detalles Bibliográficos
Autor principal: Phillies, George David Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180932/
https://www.ncbi.nlm.nih.gov/pubmed/37177143
http://dx.doi.org/10.3390/polym15091995
Descripción
Sumario:The Rouse model is the foundational basis of much of modern polymer physics. The period alternative, the Kirkwood–Riseman model, is rarely mentioned in modern monographs. The models are qualitatively different. The models do not agree as to how many internal modes a polymer molecule has. In the Kirkwood–Riseman model, polymers in a shear field perform whole-body rotation; in the Rouse model, polymers respond to shear with an affine deformation. We use Brownian dynamics to show that the Kirkwood–Riseman model for chain motion is qualitatively correct. Contrary to the Rouse model, in shear flow, polymer coils rotate. Rouse modes are cross-correlated. The amplitudes and relaxation rates of Rouse modes depend on the shear rate. Several alternatives to Rouse modes as collective coordinates are discussed.