Cargando…
Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors
The current work experimentally determined how the initial resistance and gauge factor in additively manufactured piezoresistive sensors are affected by the material, design, and process parameters. This was achieved through the tensile testing of sensors manufactured with different infill angles, l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180952/ https://www.ncbi.nlm.nih.gov/pubmed/37177305 http://dx.doi.org/10.3390/polym15092159 |
_version_ | 1785041457649811456 |
---|---|
author | Goutier, Marijn Hilbig, Karl Vietor, Thomas Böl, Markus |
author_facet | Goutier, Marijn Hilbig, Karl Vietor, Thomas Böl, Markus |
author_sort | Goutier, Marijn |
collection | PubMed |
description | The current work experimentally determined how the initial resistance and gauge factor in additively manufactured piezoresistive sensors are affected by the material, design, and process parameters. This was achieved through the tensile testing of sensors manufactured with different infill angles, layer heights, and sensor thicknesses using two conductive polymer composites. Linear regression models were then used to analyze which of the input parameters had significant effects on the sensor properties and which interaction effects existed. The findings demonstrated that the initial resistance in both materials was strongly dependent on the sensor geometry, decreasing as the cross-sectional area was increased. The resistance was also significantly influenced by the layer height and the infill angle, with the best variants achieving a resistance that was, on average, 22.3% to 66.5% lower than less-favorable combinations, depending on the material. The gauge factor was most significantly affected by the infill angle and, depending on the material, by the layer height. Of particular interest was the finding that increasing in the infill angle resulted in an increase in the sensitivity that outweighed the associated increase in the initial resistance, thereby improving the gauge factor by 30.7% to 114.6%, depending on the material. |
format | Online Article Text |
id | pubmed-10180952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101809522023-05-13 Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors Goutier, Marijn Hilbig, Karl Vietor, Thomas Böl, Markus Polymers (Basel) Article The current work experimentally determined how the initial resistance and gauge factor in additively manufactured piezoresistive sensors are affected by the material, design, and process parameters. This was achieved through the tensile testing of sensors manufactured with different infill angles, layer heights, and sensor thicknesses using two conductive polymer composites. Linear regression models were then used to analyze which of the input parameters had significant effects on the sensor properties and which interaction effects existed. The findings demonstrated that the initial resistance in both materials was strongly dependent on the sensor geometry, decreasing as the cross-sectional area was increased. The resistance was also significantly influenced by the layer height and the infill angle, with the best variants achieving a resistance that was, on average, 22.3% to 66.5% lower than less-favorable combinations, depending on the material. The gauge factor was most significantly affected by the infill angle and, depending on the material, by the layer height. Of particular interest was the finding that increasing in the infill angle resulted in an increase in the sensitivity that outweighed the associated increase in the initial resistance, thereby improving the gauge factor by 30.7% to 114.6%, depending on the material. MDPI 2023-04-30 /pmc/articles/PMC10180952/ /pubmed/37177305 http://dx.doi.org/10.3390/polym15092159 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Goutier, Marijn Hilbig, Karl Vietor, Thomas Böl, Markus Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title | Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title_full | Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title_fullStr | Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title_full_unstemmed | Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title_short | Process Parameters and Geometry Effects on Piezoresistivity in Additively Manufactured Polymer Sensors |
title_sort | process parameters and geometry effects on piezoresistivity in additively manufactured polymer sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180952/ https://www.ncbi.nlm.nih.gov/pubmed/37177305 http://dx.doi.org/10.3390/polym15092159 |
work_keys_str_mv | AT goutiermarijn processparametersandgeometryeffectsonpiezoresistivityinadditivelymanufacturedpolymersensors AT hilbigkarl processparametersandgeometryeffectsonpiezoresistivityinadditivelymanufacturedpolymersensors AT vietorthomas processparametersandgeometryeffectsonpiezoresistivityinadditivelymanufacturedpolymersensors AT bolmarkus processparametersandgeometryeffectsonpiezoresistivityinadditivelymanufacturedpolymersensors |