Cargando…
Predicting Maize Theoretical Methane Yield in Combination with Ground and UAV Remote Data Using Machine Learning
The accurate, timely, and non-destructive estimation of maize total-above ground biomass (TAB) and theoretical biochemical methane potential (TBMP) under different phenological stages is a substantial part of agricultural remote sensing. The assimilation of UAV and machine learning (ML) data may be...
Autores principales: | Kavaliauskas, Ardas, Žydelis, Renaldas, Castaldi, Fabio, Auškalnienė, Ona, Povilaitis, Virmantas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181051/ https://www.ncbi.nlm.nih.gov/pubmed/37176880 http://dx.doi.org/10.3390/plants12091823 |
Ejemplares similares
-
Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data
por: Han, Liang, et al.
Publicado: (2019) -
Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning
por: Sharma, Prakriti, et al.
Publicado: (2022) -
Evaluating how lodging affects maize yield estimation based on UAV observations
por: Liu, Yuan, et al.
Publicado: (2023) -
Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis
por: Gong, Yan, et al.
Publicado: (2018) -
Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis
por: Duan, Bo, et al.
Publicado: (2019)