Cargando…

RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach

The security and privacy risks posed by unmanned aerial vehicles (UAVs) have become a significant cause of concern in today’s society. Due to technological advancement, these devices are becoming progressively inexpensive, which makes them convenient for many different applications. The massive numb...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Syed Samiul, Chakma, Arbil, Rahman, Md Habibur, Bin Mofidul, Raihan, Alam, Md Morshed, Utama, Ida Bagus Krishna Yoga, Jang, Yeong Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181070/
https://www.ncbi.nlm.nih.gov/pubmed/37177405
http://dx.doi.org/10.3390/s23094202
_version_ 1785041485547175936
author Alam, Syed Samiul
Chakma, Arbil
Rahman, Md Habibur
Bin Mofidul, Raihan
Alam, Md Morshed
Utama, Ida Bagus Krishna Yoga
Jang, Yeong Min
author_facet Alam, Syed Samiul
Chakma, Arbil
Rahman, Md Habibur
Bin Mofidul, Raihan
Alam, Md Morshed
Utama, Ida Bagus Krishna Yoga
Jang, Yeong Min
author_sort Alam, Syed Samiul
collection PubMed
description The security and privacy risks posed by unmanned aerial vehicles (UAVs) have become a significant cause of concern in today’s society. Due to technological advancement, these devices are becoming progressively inexpensive, which makes them convenient for many different applications. The massive number of UAVs is making it difficult to manage and monitor them in restricted areas. In addition, other signals using the same frequency range make it more challenging to identify UAV signals. In these circumstances, an intelligent system to detect and identify UAVs is a necessity. Most of the previous studies on UAV identification relied on various feature-extraction techniques, which are computationally expensive. Therefore, this article proposes an end-to-end deep-learning-based model to detect and identify UAVs based on their radio frequency (RF) signature. Unlike existing studies, multiscale feature-extraction techniques without manual intervention are utilized to extract enriched features that assist the model in achieving good generalization capability of the signal and making decisions with lower computational time. Additionally, residual blocks are utilized to learn complex representations, as well as to overcome vanishing gradient problems during training. The detection and identification tasks are performed in the presence of Bluetooth and WIFI signals, which are two signals from the same frequency band. For the identification task, the model is evaluated for specific devices, as well as for the signature of the particular manufacturers. The performance of the model is evaluated across various different signal-to-noise ratios (SNR). Furthermore, the findings are compared to the results of previous work. The proposed model yields an overall accuracy, precision, sensitivity, and [Formula: see text]-score of 97.53%, 98.06%, 98.00%, and 98.00%, respectively, for RF signal detection from 0 dB to 30 dB SNR in the CardRF dataset. The proposed model demonstrates an inference time of 0.37 ms (milliseconds) for RF signal detection, which is a substantial improvement over existing work. Therefore, the proposed end-to-end deep-learning-based method outperforms the existing work in terms of performance and time complexity. Based on the outcomes illustrated in the paper, the proposed model can be used in surveillance systems for real-time UAV detection and identification.
format Online
Article
Text
id pubmed-10181070
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101810702023-05-13 RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach Alam, Syed Samiul Chakma, Arbil Rahman, Md Habibur Bin Mofidul, Raihan Alam, Md Morshed Utama, Ida Bagus Krishna Yoga Jang, Yeong Min Sensors (Basel) Article The security and privacy risks posed by unmanned aerial vehicles (UAVs) have become a significant cause of concern in today’s society. Due to technological advancement, these devices are becoming progressively inexpensive, which makes them convenient for many different applications. The massive number of UAVs is making it difficult to manage and monitor them in restricted areas. In addition, other signals using the same frequency range make it more challenging to identify UAV signals. In these circumstances, an intelligent system to detect and identify UAVs is a necessity. Most of the previous studies on UAV identification relied on various feature-extraction techniques, which are computationally expensive. Therefore, this article proposes an end-to-end deep-learning-based model to detect and identify UAVs based on their radio frequency (RF) signature. Unlike existing studies, multiscale feature-extraction techniques without manual intervention are utilized to extract enriched features that assist the model in achieving good generalization capability of the signal and making decisions with lower computational time. Additionally, residual blocks are utilized to learn complex representations, as well as to overcome vanishing gradient problems during training. The detection and identification tasks are performed in the presence of Bluetooth and WIFI signals, which are two signals from the same frequency band. For the identification task, the model is evaluated for specific devices, as well as for the signature of the particular manufacturers. The performance of the model is evaluated across various different signal-to-noise ratios (SNR). Furthermore, the findings are compared to the results of previous work. The proposed model yields an overall accuracy, precision, sensitivity, and [Formula: see text]-score of 97.53%, 98.06%, 98.00%, and 98.00%, respectively, for RF signal detection from 0 dB to 30 dB SNR in the CardRF dataset. The proposed model demonstrates an inference time of 0.37 ms (milliseconds) for RF signal detection, which is a substantial improvement over existing work. Therefore, the proposed end-to-end deep-learning-based method outperforms the existing work in terms of performance and time complexity. Based on the outcomes illustrated in the paper, the proposed model can be used in surveillance systems for real-time UAV detection and identification. MDPI 2023-04-22 /pmc/articles/PMC10181070/ /pubmed/37177405 http://dx.doi.org/10.3390/s23094202 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alam, Syed Samiul
Chakma, Arbil
Rahman, Md Habibur
Bin Mofidul, Raihan
Alam, Md Morshed
Utama, Ida Bagus Krishna Yoga
Jang, Yeong Min
RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title_full RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title_fullStr RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title_full_unstemmed RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title_short RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach
title_sort rf-enabled deep-learning-assisted drone detection and identification: an end-to-end approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181070/
https://www.ncbi.nlm.nih.gov/pubmed/37177405
http://dx.doi.org/10.3390/s23094202
work_keys_str_mv AT alamsyedsamiul rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT chakmaarbil rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT rahmanmdhabibur rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT binmofidulraihan rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT alammdmorshed rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT utamaidabaguskrishnayoga rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach
AT jangyeongmin rfenableddeeplearningassisteddronedetectionandidentificationanendtoendapproach