Cargando…
Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen
Acetaminophen (N-acetyl-p-aminophenol, APAP) is regularly used for antipyretic and analgesic purposes. Overdose or long-term exposure to APAP could lead to liver damage and hepatotoxicity. In this study, the approach of enhanced electrochemical detection of APAP by nanostructured biomass carbon/silv...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181190/ https://www.ncbi.nlm.nih.gov/pubmed/37177117 http://dx.doi.org/10.3390/nano13091571 |
Sumario: | Acetaminophen (N-acetyl-p-aminophenol, APAP) is regularly used for antipyretic and analgesic purposes. Overdose or long-term exposure to APAP could lead to liver damage and hepatotoxicity. In this study, the approach of enhanced electrochemical detection of APAP by nanostructured biomass carbon/silver was developed. Porous biomass carbon derived from Elaeagnus Angustifolia gum was prepared by pyrolysis with co-doping of electron-rich elements of nitrogen, sulfur, and phosphorus. The electrodeposition of silver onto a glassy carbon electrode modified with porous carbon could enhance the sensing signal towards APAP. Two linear ranges from 61 nM to 500 μM were achieved with a limit of detection of 33 nM. The developed GCE sensor has good anti-interference, stability, reproducibility, and human urine sample analysis performance. The silver-enhanced biomass carbon GCE sensor extends the application of biomass carbon, and its facile preparation approach could be used in constructing disposable sensing chips in the future. |
---|