Cargando…
Recent Development of Mechanical Stimuli Detectable Sensors, Their Future, and Challenges: A Review
By virtue of their wide applications in transportation, healthcare, smart home, and security, development of sensors detecting mechanical stimuli, which are many force types (pressure, shear, bending, tensile, and flexure) is an attractive research direction for promoting the advancement of science...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181258/ https://www.ncbi.nlm.nih.gov/pubmed/37177505 http://dx.doi.org/10.3390/s23094300 |
Sumario: | By virtue of their wide applications in transportation, healthcare, smart home, and security, development of sensors detecting mechanical stimuli, which are many force types (pressure, shear, bending, tensile, and flexure) is an attractive research direction for promoting the advancement of science and technology. Sensing capabilities of various force types based on structural design, which combine unique structure and materials, have emerged as a highly promising field due to their various industrial applications in wearable devices, artificial skin, and Internet of Things (IoT). In this review, we focus on various sensors detecting one or two mechanical stimuli and their structure, materials, and applications. In addition, for multiforce sensing, sensing mechanism are discussed regarding responses in external stimuli such as piezoresistive, piezoelectric, and capacitance phenomena. Lastly, the prospects and challenges of sensors for multiforce sensing are discussed and summarized, along with research that has emerged. |
---|