Cargando…
A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To mo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181288/ https://www.ncbi.nlm.nih.gov/pubmed/37177154 http://dx.doi.org/10.3390/polym15092006 |
_version_ | 1785041538417426432 |
---|---|
author | Shu, Kewei Zhou, Jiazhen Wu, Xiaojing Liu, Xuan Sun, Liyu Wang, Yu Tian, Siyu Niu, Huizhu Duan, Yihao Hu, Guangyu Wang, Haihua |
author_facet | Shu, Kewei Zhou, Jiazhen Wu, Xiaojing Liu, Xuan Sun, Liyu Wang, Yu Tian, Siyu Niu, Huizhu Duan, Yihao Hu, Guangyu Wang, Haihua |
author_sort | Shu, Kewei |
collection | PubMed |
description | As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To modify the properties of PVDF-HEP copolymer electrolytes, we introduce the graphitic C(3)N(4) (g−C(3)N(4)) nanosheets as a novel nanofiller to form g−C(3)N(4) composite solid polymer electrolytes (CSPEs). The analysis shows that the g−C(3)N(4) filler can not only modify the structure in g−C(3)N(4)CSPEs by reducing the crystallinity, compared to the PVDF−HFP solid polymer electrolytes (SPEs), but also promote a further dissociation with the sodium salt through interaction between the surface atoms of the g−C(3)N(4) and the sodium salt. As a result, enhanced electrical properties such as ionic conductivity, Na(+) transference number, mechanical properties and thermal stability of the composite electrolyte can be observed. In particular, a low Na deposition/dissolution overpotential of about 100 mV at a current density of 1 mA cm(−2) was found after 160 cycles with the incorporation of g−C(3)N(4). By applying the g−C(3)N(4) CSPEs in the sodium-metal battery with Na(3)V(2)(PO(4))(3) cathode, the coin cell battery exhibits a lower polarization voltage at 90 mV, and a stable reversible capacity of 93 mAh g(−1) after 200 cycles at 1 C. |
format | Online Article Text |
id | pubmed-10181288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101812882023-05-13 A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery Shu, Kewei Zhou, Jiazhen Wu, Xiaojing Liu, Xuan Sun, Liyu Wang, Yu Tian, Siyu Niu, Huizhu Duan, Yihao Hu, Guangyu Wang, Haihua Polymers (Basel) Article As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To modify the properties of PVDF-HEP copolymer electrolytes, we introduce the graphitic C(3)N(4) (g−C(3)N(4)) nanosheets as a novel nanofiller to form g−C(3)N(4) composite solid polymer electrolytes (CSPEs). The analysis shows that the g−C(3)N(4) filler can not only modify the structure in g−C(3)N(4)CSPEs by reducing the crystallinity, compared to the PVDF−HFP solid polymer electrolytes (SPEs), but also promote a further dissociation with the sodium salt through interaction between the surface atoms of the g−C(3)N(4) and the sodium salt. As a result, enhanced electrical properties such as ionic conductivity, Na(+) transference number, mechanical properties and thermal stability of the composite electrolyte can be observed. In particular, a low Na deposition/dissolution overpotential of about 100 mV at a current density of 1 mA cm(−2) was found after 160 cycles with the incorporation of g−C(3)N(4). By applying the g−C(3)N(4) CSPEs in the sodium-metal battery with Na(3)V(2)(PO(4))(3) cathode, the coin cell battery exhibits a lower polarization voltage at 90 mV, and a stable reversible capacity of 93 mAh g(−1) after 200 cycles at 1 C. MDPI 2023-04-24 /pmc/articles/PMC10181288/ /pubmed/37177154 http://dx.doi.org/10.3390/polym15092006 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shu, Kewei Zhou, Jiazhen Wu, Xiaojing Liu, Xuan Sun, Liyu Wang, Yu Tian, Siyu Niu, Huizhu Duan, Yihao Hu, Guangyu Wang, Haihua A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title | A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title_full | A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title_fullStr | A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title_full_unstemmed | A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title_short | A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery |
title_sort | pvdf/g−c(3)n(4)-based composite polymer electrolytes for sodium-ion battery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181288/ https://www.ncbi.nlm.nih.gov/pubmed/37177154 http://dx.doi.org/10.3390/polym15092006 |
work_keys_str_mv | AT shukewei apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT zhoujiazhen apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wuxiaojing apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT liuxuan apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT sunliyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wangyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT tiansiyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT niuhuizhu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT duanyihao apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT huguangyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wanghaihua apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT shukewei pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT zhoujiazhen pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wuxiaojing pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT liuxuan pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT sunliyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wangyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT tiansiyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT niuhuizhu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT duanyihao pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT huguangyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery AT wanghaihua pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery |