Cargando…

A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery

As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Kewei, Zhou, Jiazhen, Wu, Xiaojing, Liu, Xuan, Sun, Liyu, Wang, Yu, Tian, Siyu, Niu, Huizhu, Duan, Yihao, Hu, Guangyu, Wang, Haihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181288/
https://www.ncbi.nlm.nih.gov/pubmed/37177154
http://dx.doi.org/10.3390/polym15092006
_version_ 1785041538417426432
author Shu, Kewei
Zhou, Jiazhen
Wu, Xiaojing
Liu, Xuan
Sun, Liyu
Wang, Yu
Tian, Siyu
Niu, Huizhu
Duan, Yihao
Hu, Guangyu
Wang, Haihua
author_facet Shu, Kewei
Zhou, Jiazhen
Wu, Xiaojing
Liu, Xuan
Sun, Liyu
Wang, Yu
Tian, Siyu
Niu, Huizhu
Duan, Yihao
Hu, Guangyu
Wang, Haihua
author_sort Shu, Kewei
collection PubMed
description As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To modify the properties of PVDF-HEP copolymer electrolytes, we introduce the graphitic C(3)N(4) (g−C(3)N(4)) nanosheets as a novel nanofiller to form g−C(3)N(4) composite solid polymer electrolytes (CSPEs). The analysis shows that the g−C(3)N(4) filler can not only modify the structure in g−C(3)N(4)CSPEs by reducing the crystallinity, compared to the PVDF−HFP solid polymer electrolytes (SPEs), but also promote a further dissociation with the sodium salt through interaction between the surface atoms of the g−C(3)N(4) and the sodium salt. As a result, enhanced electrical properties such as ionic conductivity, Na(+) transference number, mechanical properties and thermal stability of the composite electrolyte can be observed. In particular, a low Na deposition/dissolution overpotential of about 100 mV at a current density of 1 mA cm(−2) was found after 160 cycles with the incorporation of g−C(3)N(4). By applying the g−C(3)N(4) CSPEs in the sodium-metal battery with Na(3)V(2)(PO(4))(3) cathode, the coin cell battery exhibits a lower polarization voltage at 90 mV, and a stable reversible capacity of 93 mAh g(−1) after 200 cycles at 1 C.
format Online
Article
Text
id pubmed-10181288
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101812882023-05-13 A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery Shu, Kewei Zhou, Jiazhen Wu, Xiaojing Liu, Xuan Sun, Liyu Wang, Yu Tian, Siyu Niu, Huizhu Duan, Yihao Hu, Guangyu Wang, Haihua Polymers (Basel) Article As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To modify the properties of PVDF-HEP copolymer electrolytes, we introduce the graphitic C(3)N(4) (g−C(3)N(4)) nanosheets as a novel nanofiller to form g−C(3)N(4) composite solid polymer electrolytes (CSPEs). The analysis shows that the g−C(3)N(4) filler can not only modify the structure in g−C(3)N(4)CSPEs by reducing the crystallinity, compared to the PVDF−HFP solid polymer electrolytes (SPEs), but also promote a further dissociation with the sodium salt through interaction between the surface atoms of the g−C(3)N(4) and the sodium salt. As a result, enhanced electrical properties such as ionic conductivity, Na(+) transference number, mechanical properties and thermal stability of the composite electrolyte can be observed. In particular, a low Na deposition/dissolution overpotential of about 100 mV at a current density of 1 mA cm(−2) was found after 160 cycles with the incorporation of g−C(3)N(4). By applying the g−C(3)N(4) CSPEs in the sodium-metal battery with Na(3)V(2)(PO(4))(3) cathode, the coin cell battery exhibits a lower polarization voltage at 90 mV, and a stable reversible capacity of 93 mAh g(−1) after 200 cycles at 1 C. MDPI 2023-04-24 /pmc/articles/PMC10181288/ /pubmed/37177154 http://dx.doi.org/10.3390/polym15092006 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shu, Kewei
Zhou, Jiazhen
Wu, Xiaojing
Liu, Xuan
Sun, Liyu
Wang, Yu
Tian, Siyu
Niu, Huizhu
Duan, Yihao
Hu, Guangyu
Wang, Haihua
A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title_full A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title_fullStr A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title_full_unstemmed A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title_short A PVDF/g−C(3)N(4)-Based Composite Polymer Electrolytes for Sodium-Ion Battery
title_sort pvdf/g−c(3)n(4)-based composite polymer electrolytes for sodium-ion battery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181288/
https://www.ncbi.nlm.nih.gov/pubmed/37177154
http://dx.doi.org/10.3390/polym15092006
work_keys_str_mv AT shukewei apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT zhoujiazhen apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wuxiaojing apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT liuxuan apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT sunliyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wangyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT tiansiyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT niuhuizhu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT duanyihao apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT huguangyu apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wanghaihua apvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT shukewei pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT zhoujiazhen pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wuxiaojing pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT liuxuan pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT sunliyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wangyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT tiansiyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT niuhuizhu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT duanyihao pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT huguangyu pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery
AT wanghaihua pvdfgc3n4basedcompositepolymerelectrolytesforsodiumionbattery