Cargando…
Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement
Natural fibers have some advantages in comparison to synthetic fibers, especially because they are more environmentally friendly. For this reason, using them as a reinforcement for polymeric matrices is growing exponentially. However, they present the disadvantage of having the hydrophilic nature, w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181289/ https://www.ncbi.nlm.nih.gov/pubmed/37177299 http://dx.doi.org/10.3390/polym15092153 |
_version_ | 1785041538659647488 |
---|---|
author | Neuba, Lucas de Mendonça Junio, Raí Felipe Pereira Souza, Andressa Teixeira Chaves, Yago Soares Tavares, Sheron Palmeira, Alexandre Alvarenga Monteiro, Sergio Neves Pereira, Artur Camposo |
author_facet | Neuba, Lucas de Mendonça Junio, Raí Felipe Pereira Souza, Andressa Teixeira Chaves, Yago Soares Tavares, Sheron Palmeira, Alexandre Alvarenga Monteiro, Sergio Neves Pereira, Artur Camposo |
author_sort | Neuba, Lucas de Mendonça |
collection | PubMed |
description | Natural fibers have some advantages in comparison to synthetic fibers, especially because they are more environmentally friendly. For this reason, using them as a reinforcement for polymeric matrices is growing exponentially. However, they present the disadvantage of having the hydrophilic nature, which strongly reduces the interface interaction. Sedge fibers have been investigated when reinforcing an epoxy matrix in terms of ballistic properties and mechanical performance. Aiming to enhance the fiber−matrix interface, an alkali treatment was proposed. The group conditions were divided into three NaOH concentrations (3%, 5%, and 10%), as well as the three periods of immersion (24, 48, and 72 h). Therefore, nine different conditions were investigated in terms of their thermal behaviors, chemical structures, physical structures, and morphological aspects. Based on TGA curves, it could be noticed that treatments related to 3% NaOH for 24 h and 48 h exhibited better thermal stability properties. For the time of 48 h, better thermal stability with for a decay of the thermal DSC curve was shown for all treatment conditions. The FTIR spectra has shown a reduction of waxes for higher NaOH concentrations. The XRD diffractogram exhibited an increase in the crystallinity index only for 5% NaOH and an immersion time of 48 h. The morphological aspects of fibers treated with 5% and 10% of NaOH have shown that the treatments have damaged the fiber, which highlighted the crystallinity index reductions. |
format | Online Article Text |
id | pubmed-10181289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101812892023-05-13 Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement Neuba, Lucas de Mendonça Junio, Raí Felipe Pereira Souza, Andressa Teixeira Chaves, Yago Soares Tavares, Sheron Palmeira, Alexandre Alvarenga Monteiro, Sergio Neves Pereira, Artur Camposo Polymers (Basel) Article Natural fibers have some advantages in comparison to synthetic fibers, especially because they are more environmentally friendly. For this reason, using them as a reinforcement for polymeric matrices is growing exponentially. However, they present the disadvantage of having the hydrophilic nature, which strongly reduces the interface interaction. Sedge fibers have been investigated when reinforcing an epoxy matrix in terms of ballistic properties and mechanical performance. Aiming to enhance the fiber−matrix interface, an alkali treatment was proposed. The group conditions were divided into three NaOH concentrations (3%, 5%, and 10%), as well as the three periods of immersion (24, 48, and 72 h). Therefore, nine different conditions were investigated in terms of their thermal behaviors, chemical structures, physical structures, and morphological aspects. Based on TGA curves, it could be noticed that treatments related to 3% NaOH for 24 h and 48 h exhibited better thermal stability properties. For the time of 48 h, better thermal stability with for a decay of the thermal DSC curve was shown for all treatment conditions. The FTIR spectra has shown a reduction of waxes for higher NaOH concentrations. The XRD diffractogram exhibited an increase in the crystallinity index only for 5% NaOH and an immersion time of 48 h. The morphological aspects of fibers treated with 5% and 10% of NaOH have shown that the treatments have damaged the fiber, which highlighted the crystallinity index reductions. MDPI 2023-04-30 /pmc/articles/PMC10181289/ /pubmed/37177299 http://dx.doi.org/10.3390/polym15092153 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Neuba, Lucas de Mendonça Junio, Raí Felipe Pereira Souza, Andressa Teixeira Chaves, Yago Soares Tavares, Sheron Palmeira, Alexandre Alvarenga Monteiro, Sergio Neves Pereira, Artur Camposo Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title | Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title_full | Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title_fullStr | Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title_full_unstemmed | Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title_short | Alkaline Treatment Investigation for Sedge Fibers (Cyperus malaccensis): A Promising Enhancement |
title_sort | alkaline treatment investigation for sedge fibers (cyperus malaccensis): a promising enhancement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181289/ https://www.ncbi.nlm.nih.gov/pubmed/37177299 http://dx.doi.org/10.3390/polym15092153 |
work_keys_str_mv | AT neubalucasdemendonca alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT junioraifelipepereira alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT souzaandressateixeira alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT chavesyagosoares alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT tavaressheron alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT palmeiraalexandrealvarenga alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT monteirosergioneves alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement AT pereiraarturcamposo alkalinetreatmentinvestigationforsedgefiberscyperusmalaccensisapromisingenhancement |