Cargando…
Study on the Detection Method for Daylily Based on YOLOv5 under Complex Field Environments
Intelligent detection is vital for achieving the intelligent picking operation of daylily, but complex field environments pose challenges due to branch occlusion, overlapping plants, and uneven lighting. To address these challenges, this study selected an intelligent detection model based on YOLOv5s...
Autores principales: | Yan, Hongwen, Cai, Songrui, Li, Qiangsheng, Tian, Feng, Kan, Sitong, Wang, Meimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181306/ https://www.ncbi.nlm.nih.gov/pubmed/37176827 http://dx.doi.org/10.3390/plants12091769 |
Ejemplares similares
-
DaylilyNet: A Multi-Task Learning Method for Daylily Leaf Disease Detection
por: Song, Zishen, et al.
Publicado: (2023) -
Assessing the Genetic Diversity of Daylily Germplasm Using SSR Markers: Implications for Daylily Breeding
por: Misiukevičius, Edvinas, et al.
Publicado: (2023) -
Detection of Green Asparagus in Complex Environments Based on the Improved YOLOv5 Algorithm
por: Hong, Weiwei, et al.
Publicado: (2023) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
por: Wang, Yongjie, et al.
Publicado: (2022)