Cargando…
FF-Net: Feature-Fusion-Based Network for Semantic Segmentation of 3D Plant Point Cloud
Semantic segmentation of 3D point clouds has played an important role in the field of plant phenotyping in recent years. However, existing methods need to down-sample the point cloud to a relatively small size when processing large-scale plant point clouds, which contain more than hundreds of thousa...
Autores principales: | Guo, Xindong, Sun, Yu, Yang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181320/ https://www.ncbi.nlm.nih.gov/pubmed/37176925 http://dx.doi.org/10.3390/plants12091867 |
Ejemplares similares
-
Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
por: Du, Jing, et al.
Publicado: (2021) -
PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants
por: Li, Dawei, et al.
Publicado: (2022) -
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023) -
Pruning Points Detection of Sweet Pepper Plants Using 3D Point Clouds and Semantic Segmentation Neural Network
por: Giang, Truong Thi Huong, et al.
Publicado: (2023) -
Spatial Aggregation Net: Point Cloud Semantic Segmentation Based on Multi-Directional Convolution
por: Cai, Guorong, et al.
Publicado: (2019)