Cargando…
Development of Hybrid DSPC:DOPC:P(OEGMA(950)-DIPAEMA) Nanostructures: The Random Architecture of Polymeric Guest as a Key Design Parameter
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181429/ https://www.ncbi.nlm.nih.gov/pubmed/37177137 http://dx.doi.org/10.3390/polym15091989 |
Sumario: | Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems. |
---|