Cargando…
Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery
Electroencephalography (EEG) is a fundamental tool for understanding the brain’s electrical activity related to human motor activities. Brain-Computer Interface (BCI) uses such electrical activity to develop assistive technologies, especially those directed at people with physical disabilities. Howe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181463/ https://www.ncbi.nlm.nih.gov/pubmed/37177482 http://dx.doi.org/10.3390/s23094277 |
Sumario: | Electroencephalography (EEG) is a fundamental tool for understanding the brain’s electrical activity related to human motor activities. Brain-Computer Interface (BCI) uses such electrical activity to develop assistive technologies, especially those directed at people with physical disabilities. However, extracting signal features and patterns is still complex, sometimes delegated to machine learning (ML) algorithms. Therefore, this work aims to develop a ML based on the Random Forest algorithm to classify EEG signals from subjects performing real and imagery motor activities. The interpretation and correct classification of EEG signals allow the development of tools controlled by cognitive processes. We evaluated our ML Random Forest algorithm using a consumer and a research-grade EEG system. Random Forest efficiently distinguishes imagery and real activities and defines the related body part, even with consumer-grade EEG. However, interpersonal variability of the EEG signals negatively affects the classification process. |
---|