Cargando…
Microbiological Quality Estimation of Meat Using Deep CNNs on Embedded Hardware Systems
Spectroscopic sensor imaging of food samples meta-processed by deep machine learning models can be used to assess the quality of the sample. This article presents an architecture for estimating microbial populations in meat samples using multispectral imaging and deep convolutional neural networks....
Autores principales: | Kolosov, Dimitrios, Fengou, Lemonia-Christina, Carstensen, Jens Michael, Schultz, Nette, Nychas, George-John, Mporas, Iosif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181489/ https://www.ncbi.nlm.nih.gov/pubmed/37177437 http://dx.doi.org/10.3390/s23094233 |
Ejemplares similares
-
Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware
por: Kolosov, Dimitrios, et al.
Publicado: (2023) -
Spectroscopic Data for the Rapid Assessment of Microbiological Quality of Chicken Burgers
por: Fengou, Lemonia-Christina, et al.
Publicado: (2022) -
Estimation of Minced Pork Microbiological Spoilage through Fourier Transform Infrared and Visible Spectroscopy and Multispectral Vision Technology
por: Fengou, Lemonia-Christina, et al.
Publicado: (2019) -
Detection of Meat Adulteration Using Spectroscopy-Based Sensors
por: Fengou, Lemonia-Christina, et al.
Publicado: (2021) -
Spike pattern recognition by supervised classification in low dimensional embedding space
por: Zacharaki, Evangelia I., et al.
Publicado: (2016)