Cargando…
Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware
Detecting vital signs by using a contactless camera-based approach can provide several advantages over traditional clinical methods, such as lower financial costs, reduced visit times, increased comfort, and enhanced safety for healthcare professionals. Specifically, Eulerian Video Magnification (EV...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181491/ https://www.ncbi.nlm.nih.gov/pubmed/37177754 http://dx.doi.org/10.3390/s23094550 |
_version_ | 1785041587170967552 |
---|---|
author | Kolosov, Dimitrios Kelefouras, Vasilios Kourtessis, Pandelis Mporas, Iosif |
author_facet | Kolosov, Dimitrios Kelefouras, Vasilios Kourtessis, Pandelis Mporas, Iosif |
author_sort | Kolosov, Dimitrios |
collection | PubMed |
description | Detecting vital signs by using a contactless camera-based approach can provide several advantages over traditional clinical methods, such as lower financial costs, reduced visit times, increased comfort, and enhanced safety for healthcare professionals. Specifically, Eulerian Video Magnification (EVM) or Remote Photoplethysmography (rPPG) methods can be utilised to remotely estimate heart rate and respiratory rate biomarkers. In this paper two contactless camera-based health monitoring architectures are developed using EVM and rPPG, respectively; to this end, two different CNNs, (Mediapipe’s BlazeFace and FaceMesh) are used to extract suitable regions of interest from incoming video frames. These two methods are implemented and deployed on four off-the-shelf edge devices as well as on a PC and evaluated in terms of latency (in each stage of the application’s pipeline), throughput (FPS), power consumption (Watt), efficiency (throughput/Watt), and value (throughput/cost). This work provides important insights about the computational costs and bottlenecks of each method on each hardware platform, as well as which platform to use depending on the target metric. One of our insights shows that the Jetson Xavier NX platform is the best platform in terms of throughput and efficiency, while Raspberry Pi 4 8 GB is the best platform in terms of value. |
format | Online Article Text |
id | pubmed-10181491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101814912023-05-13 Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware Kolosov, Dimitrios Kelefouras, Vasilios Kourtessis, Pandelis Mporas, Iosif Sensors (Basel) Article Detecting vital signs by using a contactless camera-based approach can provide several advantages over traditional clinical methods, such as lower financial costs, reduced visit times, increased comfort, and enhanced safety for healthcare professionals. Specifically, Eulerian Video Magnification (EVM) or Remote Photoplethysmography (rPPG) methods can be utilised to remotely estimate heart rate and respiratory rate biomarkers. In this paper two contactless camera-based health monitoring architectures are developed using EVM and rPPG, respectively; to this end, two different CNNs, (Mediapipe’s BlazeFace and FaceMesh) are used to extract suitable regions of interest from incoming video frames. These two methods are implemented and deployed on four off-the-shelf edge devices as well as on a PC and evaluated in terms of latency (in each stage of the application’s pipeline), throughput (FPS), power consumption (Watt), efficiency (throughput/Watt), and value (throughput/cost). This work provides important insights about the computational costs and bottlenecks of each method on each hardware platform, as well as which platform to use depending on the target metric. One of our insights shows that the Jetson Xavier NX platform is the best platform in terms of throughput and efficiency, while Raspberry Pi 4 8 GB is the best platform in terms of value. MDPI 2023-05-07 /pmc/articles/PMC10181491/ /pubmed/37177754 http://dx.doi.org/10.3390/s23094550 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kolosov, Dimitrios Kelefouras, Vasilios Kourtessis, Pandelis Mporas, Iosif Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title | Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title_full | Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title_fullStr | Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title_full_unstemmed | Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title_short | Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware |
title_sort | contactless camera-based heart rate and respiratory rate monitoring using ai on hardware |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181491/ https://www.ncbi.nlm.nih.gov/pubmed/37177754 http://dx.doi.org/10.3390/s23094550 |
work_keys_str_mv | AT kolosovdimitrios contactlesscamerabasedheartrateandrespiratoryratemonitoringusingaionhardware AT kelefourasvasilios contactlesscamerabasedheartrateandrespiratoryratemonitoringusingaionhardware AT kourtessispandelis contactlesscamerabasedheartrateandrespiratoryratemonitoringusingaionhardware AT mporasiosif contactlesscamerabasedheartrateandrespiratoryratemonitoringusingaionhardware |