Cargando…

In-Wall Imaging for the Reconstruction of Obstacles by Reverse Time Migration

In this paper, the reverse time migration (RTM) method is applied to the single-frequency reconstruction of embedded obstacles in a wall to perform an introductory study for in-wall imaging. The aim is to determine the geometrical properties of an object embedded in a wall by the use of an informati...

Descripción completa

Detalles Bibliográficos
Autores principales: Yarar, M. Lütfi, Yapar, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181498/
https://www.ncbi.nlm.nih.gov/pubmed/37177660
http://dx.doi.org/10.3390/s23094456
Descripción
Sumario:In this paper, the reverse time migration (RTM) method is applied to the single-frequency reconstruction of embedded obstacles in a wall to perform an introductory study for in-wall imaging. The aim is to determine the geometrical properties of an object embedded in a wall by the use of an information function provided via the RTM method. The method is based on the computation of that information function separately at each point on a reconstruction domain. It is defined as the correlation levels between the incident fields emitted from sources and the back-propagation of the scattered field. The problem is taken from a broader perspective in order to show and confirm the effectiveness of the method. For this purpose, numerical experiments within a fundamental scenario are determined in a particular order to perform an essential Monte Carlo simulation. The paper uses a comparative study to make an objective evaluation of the achievement level of the method in in-wall imaging. The results reveal that the method is at the applicable level of achievement.