Cargando…
Research on Data Poisoning Attack against Smart Grid Cyber–Physical System Based on Edge Computing
Data poisoning attack is a well-known attack against machine learning models, where malicious attackers contaminate the training data to manipulate critical models and predictive outcomes by masquerading as terminal devices. As this type of attack can be fatal to the operation of a smart grid, addre...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181508/ https://www.ncbi.nlm.nih.gov/pubmed/37177713 http://dx.doi.org/10.3390/s23094509 |
Sumario: | Data poisoning attack is a well-known attack against machine learning models, where malicious attackers contaminate the training data to manipulate critical models and predictive outcomes by masquerading as terminal devices. As this type of attack can be fatal to the operation of a smart grid, addressing data poisoning is of utmost importance. However, this attack requires solving an expensive two-level optimization problem, which can be challenging to implement in resource-constrained edge environments of the smart grid. To mitigate this issue, it is crucial to enhance efficiency and reduce the costs of the attack. This paper proposes an online data poisoning attack framework based on the online regression task model. The framework achieves the goal of manipulating the model by polluting the sample data stream that arrives at the cache incrementally. Furthermore, a point selection strategy based on sample loss is proposed in this framework. Compared to the traditional random point selection strategy, this strategy makes the attack more targeted, thereby enhancing the attack’s efficiency. Additionally, a batch-polluting strategy is proposed in this paper, which synchronously updates the poisoning points based on the direction of gradient ascent. This strategy reduces the number of iterations required for inner optimization and thus reduces the time overhead. Finally, multiple experiments are conducted to compare the proposed method with the baseline method, and the evaluation index of loss over time is proposed to demonstrate the effectiveness of the method. The results show that the proposed method outperforms the existing baseline method in both attack effectiveness and overhead. |
---|