Cargando…
Unsupervised Domain Adaptation for Image Classification and Object Detection Using Guided Transfer Learning Approach and JS Divergence
Unsupervised domain adaptation (UDA) is a transfer learning technique utilized in deep learning. UDA aims to reduce the distribution gap between labeled source and unlabeled target domains by adapting a model through fine-tuning. Typically, UDA approaches assume the same categories in both domains....
Autores principales: | Goel, Parth, Ganatra, Amit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181527/ https://www.ncbi.nlm.nih.gov/pubmed/37177640 http://dx.doi.org/10.3390/s23094436 |
Ejemplares similares
-
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
TSTELM: Two-Stage Transfer Extreme Learning Machine for Unsupervised Domain Adaptation
por: Zang, Shaofei, et al.
Publicado: (2022) -
Learning AngularJS: a guide to AngularJS development
por: Williamson, Ken
Publicado: (2015) -
Spatial Alignment for Unsupervised Domain Adaptive Single-Stage Object Detection
por: Liang, Hong, et al.
Publicado: (2022) -
Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification
por: Zhong, Junru, et al.
Publicado: (2023)