Cargando…
A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings
Wearable electroencephalography (EEG) has the potential to improve everyday life through brain–computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids, or thought-based digital device control. To make these innovations more practical for everyday use, researchers...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181552/ https://www.ncbi.nlm.nih.gov/pubmed/37177761 http://dx.doi.org/10.3390/s23094559 |
_version_ | 1785041601460961280 |
---|---|
author | Knierim, Michael Thomas Bleichner, Martin Georg Reali, Pierluigi |
author_facet | Knierim, Michael Thomas Bleichner, Martin Georg Reali, Pierluigi |
author_sort | Knierim, Michael Thomas |
collection | PubMed |
description | Wearable electroencephalography (EEG) has the potential to improve everyday life through brain–computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids, or thought-based digital device control. To make these innovations more practical for everyday use, researchers are looking to miniaturized, concealed EEG systems that can still collect neural activity precisely. For example, researchers are using flexible EEG electrode arrays that can be attached around the ear (cEEGrids) to study neural activations in everyday life situations. However, the use of such concealed EEG approaches is limited by measurement challenges such as reduced signal amplitudes and high recording system costs. In this article, we compare the performance of a lower-cost open-source amplification system, the OpenBCI Cyton+Daisy boards, with a benchmark amplifier, the MBrainTrain Smarting Mobi. Our results show that the OpenBCI system is a viable alternative for concealed EEG research, with highly similar noise performance, but slightly lower timing precision. This system can be a great option for researchers with a smaller budget and can, therefore, contribute significantly to advancing concealed EEG research. |
format | Online Article Text |
id | pubmed-10181552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101815522023-05-13 A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings Knierim, Michael Thomas Bleichner, Martin Georg Reali, Pierluigi Sensors (Basel) Article Wearable electroencephalography (EEG) has the potential to improve everyday life through brain–computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids, or thought-based digital device control. To make these innovations more practical for everyday use, researchers are looking to miniaturized, concealed EEG systems that can still collect neural activity precisely. For example, researchers are using flexible EEG electrode arrays that can be attached around the ear (cEEGrids) to study neural activations in everyday life situations. However, the use of such concealed EEG approaches is limited by measurement challenges such as reduced signal amplitudes and high recording system costs. In this article, we compare the performance of a lower-cost open-source amplification system, the OpenBCI Cyton+Daisy boards, with a benchmark amplifier, the MBrainTrain Smarting Mobi. Our results show that the OpenBCI system is a viable alternative for concealed EEG research, with highly similar noise performance, but slightly lower timing precision. This system can be a great option for researchers with a smaller budget and can, therefore, contribute significantly to advancing concealed EEG research. MDPI 2023-05-08 /pmc/articles/PMC10181552/ /pubmed/37177761 http://dx.doi.org/10.3390/s23094559 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Knierim, Michael Thomas Bleichner, Martin Georg Reali, Pierluigi A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title | A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title_full | A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title_fullStr | A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title_full_unstemmed | A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title_short | A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings |
title_sort | systematic comparison of high-end and low-cost eeg amplifiers for concealed, around-the-ear eeg recordings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181552/ https://www.ncbi.nlm.nih.gov/pubmed/37177761 http://dx.doi.org/10.3390/s23094559 |
work_keys_str_mv | AT knierimmichaelthomas asystematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings AT bleichnermartingeorg asystematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings AT realipierluigi asystematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings AT knierimmichaelthomas systematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings AT bleichnermartingeorg systematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings AT realipierluigi systematiccomparisonofhighendandlowcosteegamplifiersforconcealedaroundtheeareegrecordings |