Cargando…
High-Dynamic-Range Spectral Reflectance for the Segmentation of Paint Pigment: Application to Dalí’s Oil Painting Dos Figuras (1926)
Restorers and curators in museums sometimes find it difficult to accurately segment areas of paintings that have been contaminated with other pigments or areas that need to be restored, and work on the painting needs to be carried out with minimum possible damage. It is therefore necessary to develo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181576/ https://www.ncbi.nlm.nih.gov/pubmed/37177520 http://dx.doi.org/10.3390/s23094316 |
Sumario: | Restorers and curators in museums sometimes find it difficult to accurately segment areas of paintings that have been contaminated with other pigments or areas that need to be restored, and work on the painting needs to be carried out with minimum possible damage. It is therefore necessary to develop measurement systems and methods that facilitate this task in the least invasive way possible. The aim of this study was to obtain high-dynamic-range (HDR) spectral reflectance and spatial resolution for Dalí’s painting entitled Two Figures (1926) in order to segment a small area of black and white pigment that was affected by the contact transfer of reddish pigment from another painting. Using Hypermatrixcam to measure the HDR spectral reflectance developed by this research team, an HDR multispectral cube of 12 images was obtained for the band 470–690 nm in steps of 20 nm. With the values obtained for the spectral reflectance of the HDR cube, the colour of the area of paint affected by the transfer was studied by calculating the a*b* components with the CIELab system. These a*b* values were then used to define two methods of segmenting the exact areas in which there was a transfer of reddish pigment. The area studied in the painting was originally black, and the contamination with reddish pigment occupied 13.87% to 32% of the total area depending on the selected method. These different solutions can be explained because the lower limit is segmentation based on pure pigment and the upper limit considers red as an exclusion of non-black pigment. Over- and under-segmentation is a common problem described in the literature related to pigment selection. In this application case, as red pigment is not original and should be removed, curators will choose the method that selects the highest red area. |
---|